Discovery Potent of Bagasse (CMC-L-Phe) As Bioactive Material Based on DFT Calculations
More details
Hide details
Chemistry Department, Faculty of Science, Al-Azhar University, Cairo, EGYPT
Cellulose & Paper Dept., National Research Centre, El-Buhouth St., Dokki-12622, Cairo, EGYPT
Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, EGYPT
Publish date: 2018-07-14
Eurasian J Anal Chem 2018;13(5):em42
This present work deals with evaluating the safety application of synthesizing nano-CMC-L-Phe bioactive compound, as drug discovery application, using DFT theories. In this respect, the stereochemistry studies as well as geometrical optimization of ligand at density functional theory (DFT), using DFT\B3LYP with 6- 31G* level of theory calculation of frontier molecular orbitals (FMOs) were carried out. These calculations were performed for studying the stability and reactivity of ligand, heat formation, dipole moment, polarizability, thermodynamic parameters, calculated global, local chemical reactivity to give better understanding; as well as structure-property relationships (SPR) based on electronic structure of the CMC-Phe. The global and local chemical reactivity were examined for synthesized biopolymer, which showed the L- form more reactive against surrounding biological media than D-form. The ADMET profile was calculated in silico, the pharmacokinetic parameters of the ligand showed the promising futures for drug application. The docking study was suggested that, the CMC-L-Phe have a good binding affinity, and interacted with FAK active site to form stable complex, this is evident the ligand is suitable FAK inhibitor.
1. El-Saied H, Basta AH, Barsoum BN, El.berry MM. Cellulose membranes for reverse osmosis, Part I. RO cellulose acetate membranes including a composite with polypropylene. Desalination 2003;159: 171-181.
2. El-Saied H, Abdel-Hadi AK, Hosny WM, Basta AH. Metal chelates with some cellulose derivatives. Part I. Preparation and characterization of chromium (III)–carboxymethyl cellulose complexes. Polymer International 1994;35(1):27-33.
3. Abdel- Hadi AK, Hosny WM, Basta AH, El- Saied H. Metal chelates with some cellulose derivatives. Pt.II- Preparation and characterization of Co(II) - CMC complexes. Polymer Plastic Technology and Engineering 1994;33:781-791.
4. Basta AH, El-Saied H. New approach for utilization of cellulose derivatives metal complexes in preparation of durable and permanent colored papers. Carbohydrate Polymers 2008;74(2):301-308.
5. Wang Y, Xiong Y, Wang J, Zhang X, Cellulose carbon xerogel supported double-perovskite nanoparticles as aversatile and efficient catalyst for the degradation of humic acid under microwave irradiation. Catalysis Communications 2017;90:14-18.
6. Entcheva E, Bien H, Yin L, Chung CY, Farrell M, Kostov Y. Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 2004;25:5753-5762.
7. Xing Q, Zhao F, Chen S, McNamara J, DeCoster MA, Lvov YM. Porous biocompatible three-dimensional scaffolds of cellulose microfiber/gelatin composites for cell culture”. Acta Materials. 2010;6:2132-2139.
8. Fukuya MN, Senoo K, Kotera M, Yoshimoto M, Sakata O. Enhanced oxygen barrier property of poly(ethylene oxide) films crystallite-oriented by adding cellulose single nanofibers. Polymers 2014;55:5843-5846.
9. Ernsting MJ, Murakami M, Undzys E, Aman A, Press B, Li S-D, J. A docetaxel-carboxymethylcellulose nanoparticle outperforms the approved taxanenanoformulation, Abraxane, in mouse tumor models with significan control of metastases, Control. Release. 2012;162:575-581.
10. Niazi SK., “Handbook of Pharmaceutical Manufacturing Formulations”, 2nd edn. CRC Press 2009.
11. Ranga Rao, KV, Padmalatha Devi K, Buri P. Cellulose matrices for zero order release of soluble drugs. Drug Development and Industrial Pharmacy 1998;14(15–17):2299-2320..
12. Baveja SK, Ranga Rao KV, Padmalatha. K. Zero-order release hydrophilic matrix tablets of [beta]-adrenergic blockers. International Journal of Pharmacy and Pharmaceutical 1987;39:39-45.
13. Valgas C, Machado de Souza S, Smânia EFA, Smânia JrA, Screening Method to Determine Antibacterial Activity of Natural Products. Brazilian Journal of Microbiology 2007;38:369-380.
14. Sudarsan S, Franklin D.S, Sakthivel, M. Non toxic, Antibacterial, Biodegradable Hydrogels with pH-Stimuli Sensitivity: Investigation of Swelling Parameters, Carbohydrate. Polymers 2016;148:206-215.
15. Balouiri M, Sadiki M, Ibnsouda SK. Methods for In vitro Evaluating Antimicrobial Activity: A Review Journal of Pharmaceutical Analysis 2016;6:71-79.
16. Van de Loosdrecht AA, Beelen RHJ, Ossenkoppele GJ, Broekhoven MG, Langenhuijsen MMAC. A tetrazolium-based colorimetric MTT assay to quantitate human monocyte mediated cytotoxicity against leukemic cells from cell lines and patients with acute myeloid leukemia. J. Immunolog. Methods 1994;174:311-320.
17. Gera L, Chan DC, Simkeviciene V, Bunn, Jr. PA, Stewar JM. The Proceedings of the 20th American Peptide Symposium 465. 2009.
18. Li H, et al. TarFisDock: a web server for identifying drug targets with docking approach”. Nucleic Acids Res. 2006;34:W219-W224.
19. Wang L, et al. TargetHunter: an in silico target identification tool for predicting therapeutic potential of small organic molecules based on chemogenomic database. AAPS journal. 2013;15:395-406.
20. Keiser, MJ, et al. Relating protein pharmacology by ligand chemistry. Nature biotechnology 2007;25:197-206.
21. Keiser MJ, et al. Predicting new molecular targets for known drugs”. Nature 2009;462:175-181.
22. Gong J, et al. ChemMapper: a versatile web server for exploring pharmacology and chemicalstructure association based on molecular 3D similarity method. Bioinformatics 2013;29:1827-1829.
23. Liu X, Vogt I, Haque T, Campillos M, HitPick: a web server for hit identification and target prediction of chemical screenings”. Bioinforatics 2013;btt303.
24. Lounkine E, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012;486:361-367.
25. Akansu AN, Agirman-TosunH. Generalized Discrete Fourier Transform With Nonlinear Phase. IEEE Transactions on Signal Processing Sep 2010;58(9):4547-4556,.
26. Benet LZ. Pharmacokinetic parameters which are necessary to define a drug substance? European Journal of Respiratory Diseases. Supplement 1984;134:45-61.
27. Zhou SH, Hong Y, Fang GJ. Preparation, characterization and anticancereffect of chitosan nanoparticles. CRTE J. 2007;11(48):9688–9691.
28. Karagozlu MZ, Karadeniz F, Kong CS, Kim SK. Aminoethylated chitooligomers and their apoptotic activity on AGS human cancer cells. Carbohdrate Polymers 2012;87:1383-1389.
29. Basta AH, El-Saied H, El-Deftar M, El-Henawy AA, El-Sheikh HH, Hasanin MS. Properties of modified carboxymethyl cellulose and its use as bioactive compound. Carbohydrate Polymers 2016;153:641-651.
30. Martinez AGLJ, Marco F. Friedl?nder reaction on 2-Amino-3-cyano-4H-pyrans: synthesis of derivatives of 4H-Pyran [2,3-b] quinoline, new tacrine analogues. Bioorganic and Medical Chemistry Letters 1997;7:3165-3170.
31. Gaussian 09, Revision D.01, M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N.Kudin, V.N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J.Fox, Gaussian, Inc., Wallingford CT, 2013.
32. Molecular Operating Environment (MOE), 2013.08; Chemical Computing Group ULC, 1010 handbook St. West, Suite 910, Montreal, QC, Canada, H3A 2R7, 2017.
33. Parr RG, Chattaraj PK. Principle of maximum hardness. Journal of American Chemical Society 1991;113:1854-1855.
34. Parr RG, Szentpaly LV, Liu S. Electrophilicity Index. Journal of American Chemical Society 1999;121:1922-1924.
35. Lamaka SV, Zheludkevich ML,. Yasakau KA, Serra R, Poznyak SK, Ferreira MGS. Nanoporous titania interlayer as reservoir of corrosion inhibitors for coatings with self-healing ability. Progress in Organic Coating 2007;58:127-135.
36. Mendoza-Huizar LH, Rios-Reyes CH. Chemical Reactivity of Atrazine Employing the Fukui Function. Journal of the Mexican Chemical Society 2011;55(3):142-147. ISSN 1870-249X.
37. Komorowski L, Lipin´ski J, Szarek P, Ordon P. Conceptual DFT analysis of the fragility spectra of atoms along the minimum energy reaction coordinate. Journal of Chemical Physics 2011;135:014109.
38. Eddy NO, Ebenso EE, Ibok UJ, Akpan EE. Experimental and Computational Chemistry studies on the inhibition of the Corrosion of Mild Steel in H2SO4by (2s,5s,6r)-6-(2-(aminomethyl)-5-(3-(2-chlorophenyl)isoxazol-5-yl)benzamido)-3,3-dimethyl-7-oxo-4-thia-1-azabicyclo[3.2.0]heptane-2-carboxylic acid. International Journal of Electrochemical Science 2011;6:4296-4315. Retrieved from
39. Chattaraj PK, Giri S. Stability, Reactivity, and Aromaticity of Compounds of a Multivalent Superatom. Journal of Physical Chemistry A 2007;111:1116-1121.
40. Chermette H. Chemical reactivity indexes in density functional theory. Journal of Computational Chemistry 1999;20:129-154.<129::AID-JCC13>3.0.CO;2-A.
41. Langenaeker W, De Proft F. Geerlings P. Electron Correlation Effects on Fukui Functions. Journal of Molecular Structure (Theochem) 1996;362:171-175.
42. Roy RK, De Proft F, Geerlings P. Reactivity and Stability of Aromatic Carbonyl Compounds Using Density. Functional Theory - Based Local and Global. Journal of Physical Chemistry A 1998;102:7035-7040.
43. Rauk A. Orbital Interaction Theory of Organic Chemistry, 2nd ed., Wiley Interscience, New York 2001:86–136. ISBN: 978-0-471-35833-6.
44. Streitwieser A Jr. Molecular Orbital Theory for Organic Chemists, Wiley New York. 1961.
45. Fleming I. (Frontier Orbitals and Organic Chemical Reactions), John Wiley and Sons, Academic Press, New York 1976.
46. Rosenfeld IL. Corrosion Inhibitors, McGraw-Hill, New York. 1981. ISBN:0070541701 9780070541702.
47. Tang LB, Mu GN, Liu GH. The Effect of Neutral Red on the Corrosion Inhibition of Cold Rolled Steel in 1.0 M Hydrochloric Acid. Corrosion. Corrosion Science 2003;45:2251-2262.
48. Manjula P, Manonmani S, Jayaram P, Rajendran S. Anti-Corros. Methods Mater. 2001;48:319-324.
49. Hegazy MA, Hasan AM, Emara MM, Bakr MF, Youssef AH. Evaluating four synthesized Schiff bases as corrosion inhibitors on the carbon steel in 1 M hydrochloric acid. Corrosion Science 2012;65:67- 76.
50. Ayres W, Parr RG. Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited. Journal of American Chemical Society 2000;122:2010-2018.
51. Clark DE, Pickett SD. Computational methods for the prediction of ‘drug-likeness’. Drug Discovery Today 2000;5:49-58.
52. Zhao Y, Abraham MH, Lee J, Hersey A, Luscombe N, Beck G, Sherborne B, Cooper I. Rate-limited steps of human oral absorption and QSAR studies. Pharmaceutical Research 2002;19:1446-1457.
53. Wildman SA, Crippen GM. Prediction of physicochemical parameters by atomic contributions. Journal of Chemical Information and computation Science 1999;39:868-873.
54. Pharma Algorithms. Web Edition. 2009;5.
55. Moda TL, Torres LG, Carrara AE, Andricopulo AD. PK/DB: database for pharmacokinetic properties and predictive in silico ADME models. Bioinfomatics 2008;24:2270 -2271.
56. Schaller MD, Borgman CA, Cobb BS, Vines RR, Reynolds AB, Parsons Proc JT. pp125 FAK a structurally distinctive protein-tyrosine kinase associated with focal adhesions. Proceedings of the National Academy of. Scie Proc Natl Acad Sci U S A. 19nce. USA. 1992;89:5192-5196.
57. Golubovskaya V, Beviglia L, Xu LH, Earp HS, Crraven R, Cance W. Dual inhibition of focal adhesion kinase and epidermal growth factor receptor pathways cooperatively induces death receptor-mediated apoptosis in human breast cancer cells. Journal of Biological Chemistry 2002;277:38978- 38987.
58. Schaller MD. Biochemical signals and biological responses elicited by the focal adhesion kinase, Biochimica et. Biophysica Acta 2001;1540:1-21.
59. Parsons JTJ. Discovery of FAK Inhibitors Using Structure Based Drug Design. Cell Sci. 2003;116:1409-1416.