Optical Chemical Sensor of Lutetium(III) in Water Based On 2-Nitro-6-(thiazol-2-yldiazenyl)phenol Immobilized on Polymethyl meth-acrylate and 2-Nitrophenyl octyl ether Matrix
Alaa Amin 1  
More details
Hide details
Chemistry Department, Faculty of Science, Benha University, Benha, EGYPT
Publish date: 2018-08-20
Eurasian J Anal Chem 2018;13(5):em45
An optical chemical sensor membrane obtained by physical inclusion of a 2-nitro-6-(thiazol-2-yl-diazenyl)phenol (NTDP) as a selectophore and polymethyl methacrylate (PMMA) and 2-nitrophenyl octyl ether (NPOE) as a plasticizer.

The adsorption of Lu(III) causes the colour of the membrane to change from orange to pink with maximum absorbance (λmax) at 606 nm. The sensor membrane gives the best response towards Lu(III) ion at pH 6.5, after 10 min of contact time, at 150 ng mL–1 Lu(III), and 10 mL solution.

A linear Lu(III) calibration curve can be developed in the concentration range of 5.0–280 ng mL–1 with R2 = 0.9990. The molar absorptivity is found to be 9.06 x 106 L mol–1 cm–1. The detection and of quantification limits are found to be 1.63 and 4.95 ng mL–1, respectively.

The optical sensor membrane analytical characteristics was performed as interference of anions and cations, equilibrated time, reusability, detection limit, etc. and compared with the previous different conventional methods for Lu(III) using various chromophores. The optical sensor membrane investigated in this work was examined in real samples with excellent results comparing with the previous ICP-OES method.

1. Bariain C, Matias IR, Fernandez-Valdivielso C, JArregui F, Rodriguez-Mendezb ML, De Saja JA. Optical fiber sensor based on lutetium bisphthalocyanine for the detection of gases using standard telecommunication wavelengths. Sens Actuators B: Chem 2003;93:153–158.
2. Kirk OR, Othmer FD. (1982) ‘Encyclopedia of Chemical Technology’ Vol. 19 Wiley, New York, p. 851.
3. Fricker SP. Therapeutic application of lanthanides. Chem Soc Rev. 2006;35:524–533.
4. Evans CH. Interesting and useful biochemical properties of lanthanides. Trends Biochem Sci. 8;1983:445–449.
5. Zhu TC, Hahn SM, Sapatkin KA, Dimofte A, Rodriguez CE, Vulcan TG, Glatstein E, His RA. In vivo optical properties of normal canine prostate at 732 nm using motexafin lutetium-mediated photodynamic therapy. Photochem Photobiol. 2003;77:81–88.<0081:IVOPON>2.0.CO;2.
6. Vio L, Cretier G, Fhartier C, Geertsen V, Gourgiotis A, Hsnard I, Rocca JL. Separation and analysis of lanthanides by isotachophoresis coupled with inductively coupled plasma mass spectrometry. Talanta 2012;99:586–593.
7. Yang YH, Fhang ZH, Chu ZY, Xie LW, Wu FY. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu–Hf, Rb–Sr and Sm–Nd isotope systems using Multi-Collector ICP-MS and TIMS. Int J Mass Spectrom. 2010;290:120–126.
8. Sonke JE, Salters VJM. Determination of neodymium-fulvic acid binding constants by capillary electrophoresis inductively coupled plasma mass spectrometry (CE-ICP-MS). J Anal At Spectrom. 2004;19:235–240.
9. Kagaya S, Mizuno T, Tohda K. Inductively coupled plasma atomic emission spectrometric determination of 27 trace elements in table salts after coprecipitation with indium phosphate. Talanta 2009;79:512–516.
10. Li Y, Hu B. Cloud point extraction with/without chelating agent on-line coupled with inductively coupled plasma optical emission spectrometry for the determination of trace rare earth elements in biological. J Hazard Mater. 2010; 174:534–540.
11. Amaral CDB, Machado RC, Barros JAVA, Virgilio A, Schiavo D, Nogueira ARA, Nóbrega JA. Determination of rare earth elements in geological and agricultural samples by ICP-OES. Spectroscopy 2017;32:32–36.
12. Biju VM, Prasada Rao T. FAAS determination of selected rare earth elements coupled with multielement solid phase extractive preconcentration. Chem. Anal. (Warsaw) 2005;50:935–944.
13. Aliyua AS, Musac Y, Limana MS, Abbad HT, Chaandae MS, Ngenef NC, Garba NN. Determination of rare earth elements concentration at different depth profile of Precambrian pegmatites using instrumental neutron activation analysis. Appl Rad & Isotopes 2018;131:36–40.
14. Sanchez FG, Lopez MH, Gomez JCM. A graphical derivative approach to the photometric determination of lutetium and praseodymium in mixtures. Talanta 1987;34:639–644.
15. Wang NX, Yang JH, Siu H, Qi P. 3rd-Derivative spectrometric determination of neodymium and erbium in mixed rare-earth with 2-(diphenylacetyl)indan-1,3-dione and dodecyl benzenesulfonic acid sodium-salt. Analyst 1995;120:2413–2416.
16. Yang J, Jie N, Lin C, Wang M, Ma W. Determination of lutetium by fluorimetry, using BPMPHD and CTMAB. Mikrochim Acta 1997;127:85–88.
17. Manahan SE. (2006) Green chemistry and the ten commandments of sustainability. 2nd ed. ChemChar Research, Inc, Columbia: pp.159–176.
18. Koel M, Kaljurand M. Application of the principles of green chemistry in analytical chemistry. Pure & Appl Chem. 2006;78:1993–2002.
19. Tobiszewski M, Mechlińska A, Namieśnik J. Green analytical chemistry – theory and practice. Chem Soc Rev. 2010;39:2869–2878.
20. Wardencki W, Namiesnik J. Some remarks on gas chromatographic challenges in the context of green analytical chemistry. Polish J Enviro St. 2002;11:185–187.
21. Hosseini M, Ganjali MR, Aboufazeli F, Faridbod F, Goldooz H, Badiei A, Norouzi P. A selective fluorescent bulk sensor for Lutetium based onhexagonal mesoporous structures. Sens Actuators B: Chem. 2013;184:93–99.
22. Pourjavid MR, Razavi T. 2-Amino-4-(4-aminophenyl)thiazole application as an ionophore in the construction of a Lu(III) selective membrane sensor. Chin Chem Lett. 2012;23:343–346.
23. Zamani HA, Ganjali MR, Faridbod F. A lutetium PVC membrane sensor based on (2-oxo-1,2--diphenylethylidene)-N-phenylhydrazinecarbothioamide. J Serb Chem Soc. 2011;76:1295–1305.
24. Ganjali MR, Norouzi P, Atrian A, Faridbod F, Meghdadi S, Giahi M. Neutral N,N′-bis(2-pyridinecarboxamide)-1,2-ethane as sensing material for determination of lutetium(III) ions in biological and environmental samples. Mat Sci Eng. C 2009;29:205–210.
25. Seitz WR. (1991) Optical ion sensing fiber optic chemical sensors biosensors II. CRC Press, Bocaraton, Florida, pp. 1–19.
26. Castilleja-Rivera WL, Hinojosa-Reyes L, Guzman-Mar JL. Hernandez-Ramirez A., Ruiz-Ruiz E., Cerda V., Sensitive determination of chromium (VI) in paint samples using a membrane optode coupled to a multisyringe flow injection system. Talanta 2012;99:730–736.
27. Noroozifar M, Khorasani Motlagh M, Taheri A, Zare-Dorabei R. Diphenylthio-carbazone immobilized on the triacetyl cellulose membrane as an optical silver sensor. Turk J Chem. 2008;32:249–257.
28. Zare-Dorabei R, Norouzi P, Ganjali MR. Design of a Novel gadolinium optical sensor based on immobilization of (Z)-N`-((pyridine-2-yl)methylene) thiophene -2-carbohydrazide on a triacetylcellulose membrane and its application to the urine samples. Anal Lett. 2009;42:190–203.
29. Zare-Dorabei R, Norouzi P, Ganjali MR. Design of a novel optical sensor for determination of trace gadolinium. J Hazard Mater. 2009;171:601–605.
30. Ganjali MR, Zare-Dorabei R, Norouzi P. Design and construction of a novel optical sensor for determination of trace amounts of dysprosium ion. Sens Actuators B: Chem. 2009;143:233–238.
31. Seiler K, Simon W. Theoretical aspects of bulk optode membranes. Anal Chim Acta 1992;266:73–87.
32. Narayanaswamy R. Tutorial review: Optical chemical sensors: Transduction and signal processing. Analyst 1993;118:317–322.
33. Oehme I, Wolfbies OS. Optical sensors for determination of heavy metal ions. Mikrochim Acta 1997;126:177–192.
34. Joannon S, Telouk P, Pin C. Determination of U and Th at ultra-trace levels by isotope dilution inductively coupled plasma mass spectrometry using a geyser-type ultrasonic nebulizer: application to geological samples. Spectrochim Acta (B) 1997;52:1783–1789.
35. Steinberg IM, Lobnik A, Wolfbies OS. Characterisation of an optical sensor membrane based on the metal ion indicator pyrocatechol violet. Sens Actuators B: Chem. 2003;90:230–235.
36. Lerchi M, Bakker E, Rusterholz B, Simon W. Lead-selective bulk optodes based on neutral ionophores with subnanomolar detection limits. Anal Chem 1992;64: 1534–1540.
37. Faridbod F, Sedaghat M, Hosseini M, Ganjali MR, Khoobi M, Shafiee A, Norouz P. Turn-on fluorescent chemosensor for determination of lutetium ion. Spectrochim Acta (A) 2015;137:1231-1234.
38. Mohr GJ, Wolbeis OS. Optical sensors for a wide pH range based on azo dyes immobilized on a novel support. Anal Chim Acta, 1994;292:41–48.
39. Capitan-Vallvey LF, Fernandez Ramos MD, Alvarez de Cienfuegos Galvez P, Gomez J. Magnesium-selective test strip. Talanta 2005;65:239–245.
40. Bakker E, Uhlmann PB, Pretsch E. Carrier-based ion-selective electrodes and bulk optodes. 1. General characteristics. Chem Rev. 1997;97:3083–3132.
41. Buhlmann P, Pretsch E, Bakker E. Carrier-based ion-selective electrodes and bulk optodes. 2. Ionophores for potentiometric and optical sensors. Chem Rev. 1998;98:1593–1688.
42. Wolfbeis OS. Fiber-optic chemical sensors and biosensors. Anal Chem. 2004;78: 3269–3284.
43. Scindia YM, Pandey AK, Reddy AVR, Manohar SB. Chemically selective membrane optode for Cr(VI) determination in aqueous samples. Anal Chim. Acta 2004;515:311–321.
44. Sodaye S, Tripathi R, Pandey AK, Reddy AVR. Scintillating polymer inclusion membrane for preconcentration and determination of α-emitting actinides. Anal Chim Acta 2004;514: () 159–165.
45. Awual MR, Alharthi NH, Okamoto Y, Hasan MM, Rahman MM, Islam MM, Abdul-Khaleque M, Sheikh MC. Ligand field effect for Dysprosium (III) and Lutetium(III) adsorption and EXAFS coordination with novel composite nanomaterials. Chem Eng J. 2017;320:427–435.
46. Motolko KSA, Emslie DJH, Britten JF. Rigid NON-donor pincer ligand complexes of lutetium and lanthanum: synthesis and hydroamination catalysis. RSC Adv. 2017;7:27938–27945.
47. Amin AS, El-Sheikh R, Shaltout MI. Utilization of 2-nitro-6-(thiazol-2-yldiazenyl)phenol for spectrophotometric determination of trace amounts of copper(II) in water samples. Canad Chem Trans. 2014;2:296–305.
48. Mohr GJ. Polymers for optical sensors’, in Baldini F, Chester AN, Homola J, Martellucci S. (ed.), (2004) Optical chemical sensor, Springer, The Netherland: pp. 297–322.
49. Hsu SL. (1999) Poly(methyl methacrylate), in J.E. Mark, (ed.), Polymer data handbook. Oxford University Press, Inc., Oxford: pp. 655–657.
50. Sodaye S, Suresh G, Pandey AK, Goswami A. Radiochim. Studies on diffusional mobility and selectivity of I− ion in plasticized anion-exchange membrane using radiotracer. Radiochim Acta 2006;94:347–350.
51. IUPAC, Nomenclature, symbols, units and their usage in spectrochemical analysis—II. data interpretation Analytical chemistry division. Spectrochim Acta (B) 1978;33:241–245.
52. Miller JN, Miller JC. (2005) Statistics and Chemometrics for Analytical Chemistry, Prentice-Hall, 5th ed, London.
53. Marczenko Z. (1986) Separation and Spectrophotometric Determination of Elements; Elis Horwood Limited: Chichester.
54. Zare.-Dorabei R, Ganjali MR, Rahimi HR, Farahani H, Norouzi P. Design and fabrication of a novel optical sensor for determination of trace amounts of lutetium ion. Curr Chem Lett. 2013;2:125–134.