A Comparative Study of Electrochemical Behaviors of Acrylamide on Glassy Carbon, Platinum and Gold Electrode Surfaces by Cyclic Voltammetry
More details
Hide details
Necmettin Erbakan University, TURKEY
İbrahim Ender Mülazımoğlu   

Necmettin Erbakan University, Ahmet Keleşoğlu Education Faculty, Department of Chemistry, 42090, Konya, Turkey
Online publish date: 2016-12-04
Publish date: 2016-12-04
Eurasian J Anal Chem 2016;(Special issue on UAKK8 Sp 1):15–21
In this research, electrochemical and spectroelectrochemical behaviors of acrylamide (AA) have been studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Cyclic voltammetric studies of AA in acetonitrile (CH3CN) containing 100 mM tetrabutylammonium tetrafluoroborate (NBu4BF4) on glassy carbon (GC) electrode was performed between 0.0 mV and +2600 mV potential range, on platinum (Pt) electrode was performed between 0.0 mV and +1500 mV potential range and gold (Au) electrode was performed between 600 mV and +2200 mV potential range at 100 mV s-1 scan rate with 10 cycles. The surface characterization process was carried out using CV and EIS technique in both aqueous and non-aqueous media.
Tareke, E., Rydberg, P., Karlsson, P., Eriksson, S., & Törnqvist, M. (2002). Analysis of acrylamide, a carcinogen formed in heated foodstuffs. J Agric Food Chem, 50(17), 4998.
Zargar, B., Sahraie, N. R., & Khoshnam, F. (2009). Catalytic square-wave voltammetric determination of acrylamide in potato chips, Anal Lett, 42, 1407.
Krajewska, A., Radecki, J., & Radecka, H. (2009). Sensors nad biosensors for determination of acryamide and acrylic acid in potato food products, Food 3 (Special Issue 2), Global Science Books, 113-120.
Fridman, M. (2003). Chemistry, biochemistry, and safety of Acrylamide. A Review. J Agric Food Chem, 51(16), 4504.
Zyzak, D. V., Sanders, R. A., Stojanovic, M., Tallmadge, D. H., Eberhart, B. L., Ewald, D. K., Gruber, D. C., Morsch, T. R., Strothers, M. A., Rizzi, G. P., & Villagran, M. D. (2003). Acrylamide formation mechanism in heated foods. J Agric Food Chem, 51(16), 4782.
Törnqvist, M. (2005). Acrylamide in food, the discovery and its implications, a historical perspective. Adv Exp Med Biol, 561, 1.
Nemoto, S., Takatsuki, S., Sasaki, K., & Maitani, T. (2002). Determination of acrylamide in foods by GC/MS using 13C-labeled acrylamide as an internal standard. J Food Hyg Soc Jpn, 43, 371.
Rosén, J., & Hellenäs, K. E. (2002). Analysis of acrylamide in cooked foods by liquid chromatography tandem mass spectrometry. Analyst, 127, 880.
Ono, H., Chuda, Y., Ohnishi-Kameyama, M., Yada, H., Ishizaka, M., Kobayashi, H., & Yoshida, M. (2003) Analysis of acrylamide by LC/MS/MS and GC/MS in processed Japanese foods. Food Addit Contam, 20, 215.
Geng, Z., Jiang, R., & Chen, M. (2008). Determination of acrylamide in starch-based foods by ion-exclusion liquid chromatography. Food Compos Anal, 21(2), 178.
Mülazımoğlu, İ. E. (2012). Electrochemical determination of copper (II) ions at naringenin-modified glassy carbon electrode, application in lake water sample. Des Wat Treat, 44(1-3), 161.
Demir Mülazımoğlu, A., Mülazımoğlu, İ. E., & Mercimek, B. (2012). Electrochemical grafting by reduction of 4-methylaminobenzenediazonium salt at GC, Au and Pt electrode, Investigation of sensitivity against phenol by cyclic voltammetry. Anal Bioanal Electrochem, 4(4), 327.
Mülazımoglu, I. E. (2011), Investigation of electrochemical behaviour of aminophenol diazonium salt covalently grafted onto the glassy carbon electrode surface. Asian J Chem, 23(7), 3187.
Mulazimoglu, I. E., Ozkan, E., & Solak, A. O. (2012). High energetic body source and strong antioxidant quercetin, morin and rutin, their covalent grafting onto the glassy carbon electrode surfaces and investigation of surface properties. EEST Part A., 28(2), 957.
Mulazimoglu, I. E. (2010). Covalent modification of a glassy carbon surface by electrochemical oxidation of 3,3'-Diaminobenzidine. Asian J Chem, 22(10), 8203.
Veselá, H., & Šucman, E. (2013). Determination of acrylamide in food using adsorption stripping voltammetry. Czech J Food Sci, 31, 401.
Stobiecka, A., Radecka, H., & Radecki, J. (2007). Novel voltammetric biosensor for determining acrylamide in food samples. Biosens Bioelectron, 22, 2165.
Mülazımoğlu, İ. E., & Demir Mülazımoğlu, A. (2012). Investigation of sensitivity against different flavonoid derivatives of aminophenyl-modified glassy carbon sensor electrode and antioxidant activities. Food Anal Met, 5, 1419.
Demir Mülazımoğlu, A., Yılmaz, E., Mercimek, B., & Mülazımoğlu, İ. E. (2012). A comparative study of electrochemical behaviors of 1-nitroso-2-naphthol on glassy carbon and platinum electrode surfaces by cyclic voltammetry. Anal Bioanal Electrochem, 4(2), 113.
Pattar, V. P., Bagoji, A. M., Gokavi, N. M., & Nandibewoor, S. T. (2014). Electrochemical Determination of 2-thiouracil in pharmaceuticals and real samples using gold electrode. Anal Bioanal Electrochem, 6(1), 1.