A Suitable Method for Removing of Heavy Metal Ions from Aqueous Solutions Using Proper Copolymer and its Derivations
More details
Hide details
Department of Analytical Chemistry, Faculty of Chemistry, Urmia University, Urmia, IRAN
Department of Chemistry, Faculty of Science, University of Guilan, University Campus 2, Rasht, IRAN
Online publication date: 2018-01-14
Publication date: 2018-01-14
Eurasian J Anal Chem 2018;13(2):em07
Synthesis of copolymers such as poly (styrene alternative maleic anhydride) (SMA), (SMA+ Melamine +1,3-diaminopropane) (CSMA-M), (CSMA-M + propanedioic acid) (CSMA-MP) and (CSMA-M + butanedioic acid) (CSMA-MB) for removing heavy metal ions from aqueous solutions. Adsorption of Cd (II), Pb (II) and Zn(II) on modified copolymers and adsorption behavior of these heavy metal ions on the adsorbents were studied by altering the characters such as pH, adsorbent dose, contact time, and heavy metal ions concentration. Adsorption percentage was increased by increasing each of these parameters. The isotherm models such as: Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich were applied to illustrate adsorption equilibrium. The outcomes shown that the best consistency was accessed with the Langmuir isotherm equation, production maximum adsorption capacities of these adsorbents are very suitable for removing heavy metal ions from aqueous solutions. The adsorbents were characterized by Fourier transform infrared spectroscopy scanning electron microscopy and X-ray diffraction analysis.
Abate, E., Hussien, S., Laing, M., Mengistu, F. (2013). Aluminium toxicity tolerance in cereals: Mechanisms, genetic control and breeding methods. Afr J Agric Res., 8(9), 711–722.
Agency for Toxic Substances and Disease Registry. (2008). Public Health Statement Aluminium. ATSDR Publication CAS#7429-90-5.
Albretsen, J. (2006). The toxicity of iron, an essential element. Veterinary medicine, 82–90.
Alina, M., Azrina, A., Mohd Yunus, A. S., Mohd Zakiuddin, S., Mohd Izuan Effendi, H., & Muhammad Rizal, R. (2012). Heavy metals (mercury, arsenic, cadmium, plumbum) in selected marine fish and shellfish along the Straits of Malacca. Int Food Res J., 19(1), 135–140.
Andia, J. B. (1996). Aluminum toxicity: its relationship with bone and iron metabolism. Nephrol Dial Transplant., 11(Suppl 3), 69–73.
Ashe, W. F., Largent, E. J., Dutra, F. R., Hubbard, D. M., & Blackstone, M. (1953). Behavior of mercury in the animal organism following inhalation. AMA Arch Ind Hyg Occup Med., 7(1), 19–43.
Barabasz, W., Albinska, D., Jaskowska, M., & Lipiec, J. (2002). Ecotoxicology of Aluminium. Pol J Environ Stud., 11(3), 199–203.
Becker, M., & Asch, F. (2005). Iron toxicity in rice – conditions and management concepts. J Plant Nutr Soil Sci., 168, 559–553.
Bernard, A. (2008). Cadmium & its adverse effects on human health. Indian J Med Res., 128(4), 557–64.
Bezak-Mazur, E., Widiak, M., & Ciupa, T. (2001). A speciation analysis of aluminium in the River Silnica. Pol J Environ Stud., 10(4), 263–268.
Bhasin, G., Kauser, H., & Athar, M. (2002). Iron augments stage-I and stage-II tumor promotion in murine skin. Cancer Lett., 183(2), 113–122.
Bielicka, A., Bojanowska, I., & Wisniewski, A. (2005). Two Faces of Chromium-Pollutant and Bioelement. Pol J Environ Stud., 14(1),5–10.
Brochin, R., Leone, S., Phillips, D., Shepard, N., Zisa, D., & Angerio, A. (2008). The cellular effect of lead poisoning and its clinical picture. GUJHS, 5(2), 1–8.
Castagnetto, J. M., Hennessy, S. W., Roberts, V. A., Getzoff, E. D., Tainer, J. A., & Pique, M. E. (2002). MDB: the metalloprotein database and browser at the Scripps Research Institute. Nucleic Acids Res., 30(1), 379–382.
Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev., 25(3), 335–347.
Chakraborty, S., Dutta, A. R., Sural, S., Gupta, D., & Sen, S. (2013). Ailing bones and failing kidneys: a case of chronic cadmium toxicity. Ann Clin Biochem., 50(5), 492–495.
Chandra, P., & Kulshreshtha, K. (2004). Chromium accumulation and toxicity in aquatic vascular plants. Botanical Rev., 70(3), 313–327.
Chen, C. W., Chen, C. F., & Dong, C. D. (2012). Distribution and Accumulation of Mercury in Sediments of Kaohsiung River Mouth, Taiwan. APCBEE Procedia, 1,153–158.
Chowdhury, U. K., Biswas, B. K., Chowdhury, T. R., Samanta, G., Mandal, B. K., Basu, G. C., & Chakraborti, D. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ Health Perspect, 108(5), 393–397.
Duan, N., Wang, X. L., Liu, X. D., Lin, C., & Hou, J. (2010). Effect of anaerobic fermentation residues on a chromium-contaminated soil-vegetable system. Procedia Environmental Sciences, 2, 1585–1597.
Ferner, D. J. (2001). Toxicity, heavy metals. eMed J., 2(5), 1.
Gerhardsson, L., Dahlin, L., Knebel, R., & Schütz, A. (2002). Blood lead concentration after a shotgun accident. Environ. Health Perspect, 110(1),115–117.
Ghani, A. (2011). Effect of chromium toxicity on growth, chlorophyll and some mineral nutrients of Brassica juncea L. Egyptian Acad J Biol Sci., 2(1), 9–15.
Wolińska, A., Stępniewska, Z., & Włosek, R. (2013). The influence of old leather tannery district on chromium contamination of soils, water and plants. Nat. Sci., 5(2A), 253–258.
Yongsheng, W., Qihui, L., & Qian, T. (2011). Effect of Pb on growth, accumulation and quality component of tea plant. Procedia Engineering, 18, 214–219.
Zayed, A. M., & Terry, N. (2003). Chromium in the environment: factors affecting biological remediation. Plant Soil., 249(1), 139–156.
Zhitkovich, A. (2005). Importance of chromium-DNA adducts in mutagenicity and toxicity of chromium (VI). Chem Res Toxicol., 18(1), 3–11.
Albero, B., Sanchez-Brunete, C., Miguel, E., Aznar, R., & Tadeo, J. L. (2014). Determination of selected pharmaceutical compounds in biosolids by supported liquid extraction and gas chromatography-tandem mass spectrometry. J. Chromatogr.A, 1336, 52-58.
Andersen, H. R., Hansen, M., Kjølholt, J., Stuer-Lauridsen, F., Ternes, T., & Halling-Sørensen, B. (2005). Assessment of the importance of sorption for steroid estrogens removal during activated sludge treatment. Chemosphere, 61, 139-146.
Andreozzi, R., Raffaele, M., & Nicklas, P. (2003). Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere, 50, 1319-1330.
Andreozzi, R., Caprio, V., Ciniglia, C., De Champdore, M., Lo Giudice, R., Marotta, R., & Zuccato, E. (2004).
Antibiotics in the environment: occurrence in Italian STPs, fate, and preliminary assessment on algal toxicity of amoxicillin. Environ. Sci. Technol., 38, 6832-6838.
Ashton, D., Hilton, M., & Thomas, K. V. (2004). Investigating the environmental transport of human pharmaceuticals to streams in the United Kingdom. Sci. Total Environ., 333, 167-184.
Azzouz, A., & Ballesteros, E. (2012). Combined microwave-assisted extraction and continuous solid-phase extraction prior to gas chromatography-mass spectrometry determination of pharmaceuticals, personal care products and hormones in soils, sediments and sludge. Sci. Total Environ., 419, 208-215.
Ferraria, A. M., Lopes da Silva, J. D., Botelho do Rego, A. M. (2003). XPS studies of directly fluorinated HDPE: problems and solutions. Polymer, 44, 7241–7249.
Florey, K. (1985). Analytical Profiles of Drugs Substances. London: Academic Press.
Gallardo, V., Ruiz, M. A., & Delgado, A. V. (2000). Pharmaceutical suspensions and their applications. 409-464.
Garbassi, F., Morra, M., & Occhiello, E. (1994). Polymer Surfaces. Chichester: Wiley.
Guillena, G., Ramon, D. J., & Yus, M. (2007). Organocatalytic enantioselective multicomponent reactions (OEMCRs). Tetrahedron: Asymmetry, 18(6), 693.
Samadi, N., Hasanzadeh, R., & Rasad, M. (2015). Adsorption isotherms, kinetic, and desorption studies on removal of toxic metal ions from aqueous solutions by polymeric adsorbent. J. Appl. Polym. Sci., 132, 41642.
Xie, R., Wang, H., Chen, Y., & Jiang, W. (2012). Walnut shell-based activated carbon with excellent copper (II) adsorption and lower chromium (VI) removal prepared by acid–base modification. Environ. Prog. Sust. Energy, 32(3), 688-696.