Analysis of Polycyclic Aromatic Hydrocarbon Using Programmable Temperature Vaporization Inlet Couple with Gas Chromatography Mass Spectrometry (PTV-GC-MS)
More details
Hide details
Tunku Abdul Rahman University College, Faculty of Applied Sciences, Department of Physical Science, Jalan Genting Kelang, 53300, Setapak, Kuala Lumpur, MALAYSIA
Chong Kian Wei   

Tunku Abdul Rahman University College, Faculty of Applied Sciences, Jalan Genting Kelang, 53300, Setapak, Kuala Lumpur, Malaysia
Online publication date: 2017-08-11
Publication date: 2017-08-11
Eurasian J Anal Chem 2017;12(6):923–938
The conditions in programmable temperature vaporization inlet of a gas chromatography–mass spectrometry (PTV-GC–MS) were optimized to enhance the detection of five compounds of polycyclic aromatic hydrocarbon (PAH) namely acenaphthylene, fluorene, anthracene, phenanthrene and pyrene. PTV parameters such as injection volume, vent pressure, vent time, vent flow, initial heating rate, purge flow rate, purge time and injection delay time were optimized. The optimized injection volume was 150 µL, which was introduced into the inlet by six times repeating injection of 25 µL using automatic liquid sampler at an interval of 5 seconds between each injection. The optimized vent flow and pressure are 400 mL/min and 5 psi for 2 minutes, respectively. The purge flow rate and initial heating rate were optimized to 400 mL/min for 2 minutes and 400 oC/min. The performance of PTV solvent vent mode was compared to the splitless injection mode. The obtained limit of detection (LOD) in solvent vent mode was approximately five to six times lower than the limit obtained in splitless injection mode. The determined recoveries varied from 98.1 to 98.9% with pooled relative standard deviations ranging from 9.8 to 11.4%.
William, T. J. W., & Greg, J. (1999). Compendium Method TO-13A: Determination of Polycyclic Aromatic Hydrocarbons (PAHs) in Ambient Air Using Gas Chromatography/Mass Spectrometry (GCMS), USEPA, Cincinnati, pp. 13A-11.
Bojes, H. K., & Pope, P. G. (2007). Characterization of EPA’s 16 priority pollutant polycyclic aromatic hydrocarbons (PAHs) in tank bottom solids and associated contaminated soils at oil exploration and production sites in Texas. Regulatory Toxicology and Pharmacology, 47(3), 288-295.
German Federal Environment Agency. (2012). Polycyclic aromatic hydrocarbons. (Press office, Dessau-RoBlau, Germany), pp. 9.
Department Of Health And Human Services. (1995). Public Health Statement for Polycyclic Aromatic Hydrocarbons (PAHs), Agency for Toxic Substances and Disease Registry, Atlanta, GA 30333, pp. 3.
Gomaa, E. A., Gray, J. I., Rabie, S., Lopez-Bote, C. & Booren, A. M. (1993). Polycyclic aromatic hydrocarbons in smoked food products and commercial liquid smoke flavourings. Food Additives & Contaminants, 10(5), 503-521.
Hussein, I. A. S., & Mona, S. M. M. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107-123.
Lassen, P., Hoffmann, L., & Thomsen, M. (2011). PAHs in toys and childcare products. National Environmental Research Institute, Aarhus University, Roskilde, pp. 1-41.
British Toy and Hobby Association. (2015). Polycyclic Aromatic Hydrocarbons (PAH): Regulation (EU) No 1272/2013 amending Annex XVII Entry 50 of the REACH Regulation (EC) 1907/2006, BTHA House, London, SE1 4BS, pp. 3.
US Environmental Protection Agency. (2015). Pyrene-EPA Archives, (Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333), pp. 3.
Junk, G. A., & Richard, J. J. (1988). Organics in water: Solid phase extraction on a small scale. Analytical Chemistry, 60(5), 451–454.
Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journal of Chromatography A, 1116(1-2), 1–9.
Lundstedt, S., Van Bavel, B., Haglund, P., Tysklind, M., & Berg, L. O. (2000). Pressurised liquid extraction of polycyclic aromatic hydrocarbons from contaminated soils. Journal of Chromatography A, 883(1-2), 151–162.
Titato, G. M., & Lancas, F. M. (2005). Comparison between different extraction (LLE and SPE) and determination (HPLC and capillary-LC) techniques in the analysis of selected PAHs in water samples. Journal of Liquid Chromatography and Related Technologies, 28(19), 3045–3056.
Wong, P. K. & Wang, J. (2001). The accumulation of polycyclic aromatic hydrocarbons in lubricating oil over time—a comparison of supercritical fluid and liquid-liquid extraction methods. Environmental Pollution, 112(3), 407– 415.
Norlock, F. M., Jang, J. K., Zou, Q. M., Schoonover, T. M., & Li, A. (2011). Large-Volume Injection PTV-GC-MS Analysis of Polycyclic Aromatic Hydrocarbons in Air and Sediment Samples. Journal of the Air & Waste Management Association, 52, 19-26.
Díaz-Moroles, N. E., Garza-Ulloa, H. J., Castro-Ríos, R., Ramírez-Villarreal, E. G., Barbarín-Castillo, J. M., Salazar-Cavazos, M. D. L. L., & Torres, N. W. (2007). A Comparison of the Performance of Two Chromatographic and Three Extraction Techniques for the Analysis of PAHs in Sources of DrinkingWater. Journal of Chromatographic Science, 45, 57-62.
Worrall, K. (2007). Fast Gc/Ms/Ms Analysis Of Polyaromatic Hydrocarbbons Using Waters Quattro Micro GC, Waters Corporation Milford, MA 01757 USA, pp. 1.
Smith, D., & Lynam, K. (2010). GC/MS Analysis of European Union (EU) Priority Polycyclic Aromatic Hydrocarbons (PAHs) using an Agilent J&W DB-EUPAH GC Column with a Column Performance Comparison. Agilent Technologies Inc Wilmngton, DE 19808 USA, pp. 2.
Smith, D., & Lynam, K. (2012). Polycyclic Aromatic Hydrocarbon (PAH) Analysis in Fish by GC/MS Using Agilent Bond Elut QuEChERS dSPE Sample Preparation and a High Efficiency DB-5ms Ultra Inert GC Column, Agilent Technologies Inc Wilmngton, DE 19808 USA, pp. 3.
Smith, D., & Lynam, K. (2008) Polycyclic Aromatic Hydrocarbon (PAH) Analysis Using Agilent J&W DB-5ms Ultra Inert Capillary GC Column, Agilent Technologies Inc Wilmngton, DE 19808 USA, pp. 2.
Yuan, M., Jiang, J., Mao, T., & Feng, L. (2010). The preparation and analysis of PAHs in meat by GC-MS, Perkin Elmer, Inc. Waltham, MA 02451 USA, pp. 20.
Grob, R. L., & Barry, E. F. (2004). Modern Practice of Gas Chromatography, John Wiley & Sons, Inc., Hoboken, New Jersey, pp. 485-486.
Agilent Technologies. (2001). Agilent 6890N Gas Chromatograph: User Information, Agilent Technologies Inc Wilmngton, DE 19808 USA, pp. 377.
Wilson, B., Wylie, P. L., & Klee, M. S. (1997). Large Volume Injection for Gas Chromatography Using a PTV Inlet, Agilent Technologies Inc. Wilmngton, DE 19808 USA, pp. 1-2.
Vallejo, A., Fernández, L. A., Olivares, M., Prieto, A., Etxebarria, N., Usobiaga, A., & Zuloaga, O. (2010). Optimization of large volume injection-programmable temperature vaporization-gas chromatography–mass spectrometry analysis for the determination of estrogenic compounds in environmental samples. Journal of Chromatography A, 1217, 8327-8333.
Du, G., Song, Y. L., & Wang, Y. T. (2011). Rapid simultaneous determination of multiple pesticide residues in traditional Chinese medicines using programmed temperature vaporizer injection–fast gas chromatography coupled with mass spectrometry. Journal of Separation Science, 34, 3372-3382.
Buczyńska, A. J., Geypens, B., Grieken, R. V., & Wael, K. D. (2014). Large-volume injection combined with gas chromatography/ isotope ratio mass spectrometry for the analysis of polycyclic aromatic hydrocarbons. Rapid Communications in Mass Spectrometry, 28, 1-9.
Delgadillo-Marín, M. A., Peña-Álvarez, A., & Villalobos, M. (2013). Application of Programmed Temperature Vaporization Large Volume Injection Gas Chromatography (PTV-LVI-GC) to the Analysis of Polycyclic Aromatic Hydrocarbons (PAHs) in Soils. Journal of the Mexican Chemical Society, 57(2), 85-91.
Korenková, E., Matisová, E., & Slobodník, J. (2004). Optimization of Conditions for PTV Large-Volume Injection Combined with Fast GC–MS. Journal of Chromatographic Science, 42, 531-535.
Zhao, L. M., & Meng, C. K. (2012). Optimized method development of large volume injection for GC/MS/MS of food pesticides, Agilent Technologies, Inc. Wilmington, DE 19808, pp. 4.
Gómez-Ruiz, J. A., Cordeiro, F., López, P., & Wenzl, T. (2009). Optimisation and validation of programmed temperature vaporization (PTV) injection in solvent vent mode for the analysis of the 15 + 1 EU-priority PAHs by GC–MS. Talanta, 80(2), 643-650.
Zhang, X. Y., Zhao, L., Wang, Y. X., Xu, Y. P., & Zhou, L. P. (2013). Journal of Separation Science, 00, 1-9.
Stajnbaher, D., & Zupancic-Kralj, L. (2008). Optimisation of programmable temperature vaporizer-based large volume injection for determination of pesticide residues in fruits and vegetables using gas chromatography–mass spectrometry. Journal of Chromatography A, 1190, 316-326.
Hoffmann, A., & MacNamara, K. (2012). Large volume injection with solvent venting-application to trace detection of analytes in water, Mülheim an der Ruhr, GERSTEL GmbH & Co. KG, p 4.
Godula, M., Hajslova, J., Mastouska, K., & Krivankova, J. (2001). Optimization and application of the PTV injector for the analysis of pesticide residues. Journal of Separation Science, 24, 355-366.
Chromacademy. (2010). Mass spectrometry fundamental GC-MS GC considerations, Crawford scientific, MN55802, USA, pp. 16.
Pinto, C. G., Martin, S. H., Pavon, J. L. P., & Cordero, B. M. (2011). A simplified Quick, Easy, Cheap, Effective, Rugged and Safe approach for the determination of trihalomethanes and benzene, toluene, ethylbenzene and xylenes in soil matrices by fast gas chromatography with mass spectrometry detection. Analytica Chimica Acta, 689, 129-136.