Chemiluminescence System of Permanganate-Sulfite for Simple Determination of Zolpidem
More details
Hide details
Golestan University, IRAN
Young Elite Sponsors Institute, IRAN
Ali Mokhtari   

Department of Science, Golestan University, Gorgan, I.R. Iran
Online publication date: 2016-12-09
Publication date: 2016-12-09
Eurasian J Anal Chem 2017;12(2):61–74
Zolpidem is an imidazopyridine agent for short term treatment of insomnia with a favorable adverse effect profile. A novel chemiluminescence (CL) method has been proposed for simple determination of zolpidem. The method is based on the fact that zolpidem can produce CL emission in the system of acidic KMnO4 (permanganate) and Na2SO3 (sulfite). On the optimized conditions of chemical variables, CL intensity was proportional to concentration of zolpidem in the range 2.5-295.1 ng mL-1. Limit of detection was 1.6 ng mL-1 (S/N=3). The percent of relative standard deviation was 4.5% for 98.4 ng mL-1 zolpidem. The proposed method was satisfactorily applied for the determination of zolpidem in pharmaceutical formulations and human plasma samples. Sampling rate of the method was calculated about 30 samples h-1. CL mechanism has been proposed using UV-Vis and CL spectra.
Kuzniar, T. J., Balagani, R., Radigan, K. A., Factor, P., & Mutlu, G. M. (2010). Coma with Absent Brainstem Reflexes Resulting from Zolpidem Overdose. American Journal of Therapeutics, 17, e172.
Holm, K. J., & Goa, K. L. (2000). Zolpidem. Drugs 59, 865.
Gock, S. B., Wong, S. H., Nuwayhid, N., Venuti, S. E., Kelley, P. D., Teggatz, J. R., & Jentzen, J. M. (1999). Acute zolpidem overdose—report of two cases. Journal of analytical toxicology, 23, 559.
Huang, W-S., Tsai, C-H., Lin, C-C., Muo, C-H., Sung, F-C., Chang, Y-J., & Kao, C-H. (2013). Relationship Between Zolpidem Use and Stroke Risk: A Taiwanese Population–Based Case-Control Study. The Journal of clinical psychiatry, 74, 433.
Laloup, M., Fernandez, MdMR., De Boeck, G., Wood, M., Maes, V., & Samyn, N. (2005). Validation of a liquid chromatography-tandem mass spectrometry method for the simultaneous determination of 26 benzodiazepines and metabolites, zolpidem and zopiclone, in blood, urine, and hair. Journal of analytical toxicology, 29, 616.
Giroud, C., Augsburger, M., Menetrey, A., & Mangin, P. (2003). Determination of zaleplon and zolpidem by liquid chromatography–turbo-ionspray mass spectrometry: application to forensic cases. Journal of Chromatography B, 789, 131.
Shi, Y., Xiang, P., Shen, B., & Shen, M. (2012). A rapid and accurate UPLC/MS/MS method for the simultaneous determination of zolpidem and its main metabolites in biological fluids and its application in a forensic context. Journal of Chromatography B, 911, 140.
Jang, M., Chang, H., Yang, W., Choi, H., Kim, E., Yu, B-H., Oh, Y., & Chung, H. (2013). Development of an LC–MS/MS method for the simultaneous determination of 25 benzodiazepines and zolpidem in oral fluid and its application to authentic samples from regular drug users. Journal of Pharmaceutical and Biomedical Analysis, 74, 213.
Concheiro, M., de Castro, A., Quintela, Ó., Cruz, A., & López-Rivadulla, M. (2008). Determination of illicit and medicinal drugs and their metabolites in oral fluid and preserved oral fluid by liquid chromatography–tandem mass spectrometry. Analytical and bioanalytical chemistry, 391, 2329.
Bhatt, J., Jangid, A., Shetty, R., Shah, B., Kambli, S., Subbaiah, G., & Singh, S. (2006). Quantification of zolpidem in human plasma by liquid chromatography–electrospray ionization tandem mass spectrometry. Biomedical Chromatography, 20, 736.
Eliassen, E., & Kristoffersen, L. (2014). Quantitative determination of zopiclone and zolpidem in whole blood by liquid–liquid extraction and UHPLC-MS/MS. Journal of chromatography B, 971, 72.
Ring, P. R., & Bostick, J. M. (2000). Validation of a method for the determination of zolpidem in human plasma using LC with fluorescence detection. Journal of Pharmaceutical and Biomedical Analysis, 22, 495.
Laviana, L., Mangas, C., Fernández-Marí, F., Bayod, M., & Blanco, D. (2004). Determination and in-process control of zolpidem synthesis by high-performance liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 36, 925.
Nirogi, R. V., Kandikere, V. N., Shrivasthava, W., & Mudigonda, K. (2006). Quantification of zolpidem in human plasma by high performance liquid chromatography with fluorescence detection. Biomedical Chromatography, 20, 1103.
Hempel, G., & Blaschke, G. (1996). Direct determination of zolpidem and its main metabolites in urine using capillary electrophoresis with laser-induced fluorescence detection. Journal of Chromatography B: Biomedical Sciences and Applications, 675, 131.
Debruyne, D., Lacotte, J., Hurault Ligny B. D., & Moulin, M. (1991). Determination of zolpidem and zopiclone in serum by capillary column gas chromatography. Journal of pharmaceutical sciences, 80, 71.
Stanke, F., Jourdil, N., Bessard, J., & Bessard, G. (1996). Simultaneous determination of zolpidem and zopiclone in human plasma by gas chromatography-nitrogen-phosphorus detection. Journal of Chromatography B: Biomedical Sciences and Applications, 675, 43.
Chomwal, R., Kumar, A., & Goyal, A. (2010). Spectrophotometric methods for determination of zolpidem tartrate in tablet formulation. Journal of Pharmacy and Bioallied Sciences, 2, 365.
Patil, K., Pore, Y., & Bhise, S. (2010). Spectrophotometric Estimation of Zolpidem in tablets. J Pharm sci res, 2, 1.
Kelani, K. M. (2004). Selective potentiometric determination of zolpidem hemitartrate in tablets and biological fluids by using polymeric membrane electrodes. Journal of AOAC International, 87, 1309.
Radi, A-E., Bekhiet, G., & Wahdan, T. (2004). Electrochemical Study of Zolpidem at Glassy Carbon Electrode and Its Determination in a Tablet Dosage Form by Differential Pulse Voltammetry. Chemical and Pharmaceutical Bulletin, 52, 1063.
De Clerck, I., & Daenens, P. (1997). Development of a Radioimmunoassay for the Determination of Zolpidem in Biological Samples. Analyst, 122, 1119.
Mokhtari, A. (2014). Sensitive determination of aripiprazole using chemiluminescence reaction of tris (1, 10-phenanthroline) ruthenium (II) with acidic Ce (IV). Analytical Methods, 6, 9588.
Alam, S. M., & Lee, S. H. (2008). Flow-Injection Chemiluminescence Determination of Sparfloxacin Using Potassium Perrnanganate-Sodium Sulfite. Applied Chemistry, 12, 97.
Payán, M. R., López, M. Á. B., Fernández-Torres, R., Navarro, M. V., & Mochón, M. C. (2009). Hollow fiber-based liquid-phase microextraction (HF-LPME) of ibuprofen followed by FIA-chemiluminescence determination using the acidic permanganate–sulfite system. Talanta, 79, 911.
Zhuang, Y-F., Zhang, S-C., Yu, J-S., & Ju, H-X. (2003). Flow injection determination of papaverine based on its sensitizing effect on the chemiluminescence reaction of permanganate-sulfite. Analytical and bioanalytical chemistry, 375, 281.
Li, D., Du, J., & Lu, J. (2008). Chemiluminescence determination of atenolol in biological fluids by a europium-sensitized permanganate-sulfite system. Microchimica Acta, 161, 169.
Gao, J., Guo, Z., Yu, S., Su, F., Ma, H., Du, B., Wei, Q., & Pang, X. (2015). A novel controlled release system-based homogeneous immunoassay protocol for SCCA using magnetic mesoporous Fe3O4 as a nanocontainer and aminated polystyrene microspheres as a molecular gate. Biosensors and Bioelectronics, 66, 141.
Li, X., Zhang, X., Ma, H., Wu, D., Zhang, Y., Du, B., & Wei, Q. (2014). Cathodic electrochemiluminescence immunosensor based on nanocomposites of semiconductor carboxylated g-C3N4 and graphene for the ultrasensitive detection of squamous cell carcinoma antigen. Biosensors and Bioelectronics, 55, 330.
Li, H., Guo, C-Y., & Xu, C-L. (2015). A highly sensitive non-enzymatic glucose sensor based on bimetallic Cu–Ag superstructures. Biosensors and Bioelectronics, 63, 339.
Ren, X., Yan, T., Zhang, Y., Wu, D., Ma, H., Li, H., Du, B., & Wei, Q. (2014). Nanosheet Au/Co3O4-based ultrasensitive nonenzymatic immunosensor for melanoma adhesion molecule antigen. Biosensors and Bioelectronics, 58, 345.
Ren, X., Wu, D., Wang, Y., Zhang, Y., Fan, D., Pang, X., Li, Y., Du, B., & Wei, Q. (2015). An ultrasensitive squamous cell carcinoma antigen biosensing platform utilizing double-antibody single-channel amplification strategy. Biosensors and Bioelectronics, 72, 156.
Lv, X., Pang, X., Li, Y., Yan, T., Cao, W., Du, B., & Wei, Q. (2015). Electrochemiluminescent Immune-Modified Electrodes Based on Ag2Se@CdSe Nanoneedles Loaded with Polypyrrole Intercalated Graphene for Detection of CA72-4. ACS Applied Materials & Interfaces, 7, 867.
Gao, P., Ma, H., Yan, T., Wu, D., Ren, X., Yang, J., Du, B., & Wei, Q. (2015). Construction of dentate bonded TiO2-CdSe heterostructures with enhanced photoelectrochemical properties: versatile labels toward photoelectrochemical and electrochemical sensing. Dalton Transactions, 44, 773.
Mokhtari, A., Goudarzi, A., Benam, M., Mehdizadeh Langroodi, S., Karimmohammad, S., & Keyvanfard, M. (2016). Fabrication and characterization of Cu(OH)2/CuO nanowires as a novel sensitivity enhancer of the luminol-H2O2 chemiluminescence system: determination of cysteine in human plasma. RSC Advances, 6, 5320.
Mokhtari, A., Keyvanfard, M., & Emami, I. (2015). Chemiluminescence Determination of Carminic Acid in Foodstuffs and Human Plasma Using Ru (phen) 3 2+-Acidic Ce (IV) System. Food Analytical Methods, 8, 2457.
Zhang, S., Zhuang, Y., & Ju, H. (2004). Flow injection chemiluminescence determination of papaverine using cerium (IV) sulfite system. Analytical letters, 37, 143.
Stauff, J., & Jaeschke, W. (1975). A chemiluminescence technique for measuring atmospheric trace concentrations of sulfur dioxide. Atmospheric Environment, (1967) 9, 1038.
Meixner, F., & Jaeschke, W. (1984). Chemiluminescence technique for detecting sulphur dioxide in the ppt-range [injurious factors]. Fresenius' Zeitschrift fuer Analytische Chemie (Germany, FR):
Mokhtari, A., Jafari Delouei, N., Keyvanfard, M., & Abdolhosseini, M. (2016). Multiway analysis applied to time‐resolved chemiluminescence for simultaneous determination of paracetamol and codeine in pharmaceuticals. Luminescence, DOI: 10.1002/bio.3100.
Mokhtari, A., Keyvanfard, M., Emami, I., Delouei, N. J., Pishkhani, H. F., Ebrahimi, A., & Karimian, H. (2016). Determination of Aspirin Using Chemiluminescence System of Tris (1, 10 phenanthroline) Ruthenium (II)-Cerium (IV). Journal of the Brazilian Chemical Society, 27, 566.
Chouinard, G., Lefko-Singh, K., & Teboul, E. (1999). Metabolism of anxiolytics and hypnotics: benzodiazepines, buspirone, zoplicone, and zolpidem. Cellular and molecular neurobiology, 19, 533.
Malesevic, M., Zivanovic, L., Protic, A., Radisic, M., Lausevic, M., Jovic, Z., & Zecevic, M. (2014). Stress degradation studies on zolpidem tartrate using LC-DAD and LC-MS methods. Acta Chromatographica, 26, 81.
Durol, A. L. B., & Greenblatt, D. J. (1997). Analysis of zolpidem in human plasma by high-performance liquid chromatography with fluorescence detection: Application to single-dose pharmacokinetic studies. Journal of analytical toxicology, 21, 388.