The effect of 1H-benzotriazole (BTAH) with ppm (part per million) grade concentrations on copper corrosion in aerated 0.5 M NaCl solution is studied using chemical method (weight loss) and electrochemical methods (Potentiodynamic Polarization and Electrochemical Impedance Spectroscopy (EIS)). The present study confirm that the BTAH acts as a mixed-type inhibitor of copper corrosion in 0.5 M NaCl. The optimum inhibition efficiency is at 30 ppm of BTAH. The surface characterization performed using Scanning Electron Microscopy (SEM) to confirm the adsorption of the inhibitor molecules after 21 days of immersion time in aerated 0.5 M NaCl. The results obtained from different techniques used in this research are in very good agreement and revealed that the BTAH is a very good inhibitor of copper corrosion in sodium chloride medium. Computer Simulation techniques confirm that the BTAH molecules adsorbed on the Cu (111) Surface.
REFERENCES(43)
1.
Jafari, A. H., Hosseini, S. M., & Jamalizadeh, E. (2010). Investigation of Smart Nanocapsules Containing Inhibitors for Corrosion Protection of Copper. Electrochimica Acta, 55, 9004-9009.
Hong, S., Chen, W., Luo, H. Q., & Li, N. B. (2010). Inhibition Effect of 4-amino-antipyrine on the Corrosion of Copper in 3wt. % NaCl Solution. Corrosion Sci., 57, 270-278.
Annibaldi, V., Rooney, A. D., & Breslin, B. C. (2012). Corrosion Protection of Copper using Polypyrrole Electrosynthesised from a Salicylate Solution. Corrosion Sci., 59, 179-185.
Nüñez, L., Reguera, E., Corvo, F., Gonzãlez, R., & Vazquez, C. (2005). Corrosion of Copper in Seawater and its Aerosols in a Topical Island. Corrosion Sci., 47, 464-481.
Sherif, E. M., Erasmus, R. M., & Comins, J. D. (2007). Corrosion of Copper in Aerated Synthetic Seawater Solutions and its Inhibition by 3-amino-1,2,4-triazole. J. Colloid Interface Sci., 309, 470-477.
Hammouti, B., Dafali, A., Touzani, R., & Bouachrine, M. (2012). Inhibition of Copper Corrosion by Bipyrazole Compound in Aerated 3%NaCl. J. Saudi Chemical Soc., 16, 413-418.
Zhang, D. Q., Wu, H., & Gao, L. X. (2012). Synergistic Inhibition Effect of L-Phenylalanine and Rare Earth Ce(IV) Ion on the Corrosion of Copper in Hydrochloric Acid Solution. Materials Chemistry and Physics, 133, 981-986.
Hack, H. P., & Pickering, H. W. (1991). AC Impedance study of Cu and Cu-Ni Alloys in Aerated Salt Water I. Pd Coating and Corrosion Product Stripping. J. Electrochem. Soc., 138, 690-695.
Benedetti, A. V., Sumodjo, P. T. A., Nobe, K., Cabot, P. L., & Proud, W. G. (1995). Electrochemical Studies of Copper, Copper-aluminium and Copper-aluminium-silver Alloys: Impedance Results in 0.5 M NaCl. Electrochimica Acta, 40, 2657.
Zhou, G., Shao, H., & Loo, B. H. (1997). A study of the copper electrode behavior in borax buffer solutions containing chloride ions and Benzotriazole-type inhibitors by voltammetry and the photocurrent response method. J. Electroanal. Chem, 421, 129.
Brusic, V., Frisch, M. A., Eldridge, B. N., Novak, F. P., Kaufman, F. B., Rush, B. M., & Frankel, G. S. (1991). Copper Corrosion with and without Inhibitors. J. Electrochem. Soc., 138, 3483.
Khaled, K. F. (2009). Monte Carlo simulations of corrosion inhibition of mild steel in 0.5 M sulfuric acid by some green corrosion inhibitors. J. Solid Stat. Electrochem, 13, 1743.
Strehblow, H. H., & Titze, B. (1980). The investigation of the passive behaviour of copper in weeklyacid and alkaline solutions and the examination of the passive film by ESCA and ISS. Electrochimca Acta, 25, 839-850.
Hashemi, T., & Hogarth, C. A. (1988). The mechanism of corrosion inhibition of copper in NaCl solution by benzotriazole studied by electron spectroscopy. Electrochimca Acta, 33, 1123-1127.
Gardiner, D. J., Gorvin, A. C., Gutteridge, C., Jackson, A. R. W., & Raper, E. S. (1985). In Situ Characterization of Corrosion Inhibition Complexes on Copper Surfaces using Raman Microscopy. Corrosion Sci., 25, 1019-1027.
Keenan, A. G., Webb, C. A., & Karmen, D. A. (1976). Polarisation Resistance Study of the Effect of Alpha-amino Acids on Copper Corrosion Kinetics. Anodic Oxide of Vanadium, 123, N 02.
Amin, M. M. (2006). Weight loss, Polarization, Electrochemical Impedance Spectroscopy, SEM and EDX Studies of the Corrosion Inhibition of Copper in Aerated NaCl Solutions. J. Appl. Electrochem., 36, 215-216.
Rao, A., Iqbal, Y., & Sreedhar, B. (2010). Electrochemical and Surface Analytical Studies of the Self-assembled Monolayer of 5-methoxy-2-(octadecalthio) benzamidazole in Corrosion Protection of Copper. Electrochim. Acta, 55, 620-631.
Sherif, E. M., & Park, S. M. (2006). Inhibition of Copper Corrosion in Acidic Picking solutions by N-phenyl-1, 4-phenylenediamine. Electrochimica Acta, 51, 4655-4673.
Sherif, E. M., & Almajid, A. A. (2010). Surface Protection of Copper in Aerated 3.5 % Sodium Chloride Solutions by 3-amino-5-mercapto-1, 2, 4-triazole as a Copper Corrosion Inhibitor. J. Appl. Electrochem., 40, 1555-1562.
Liao, Q. Q., Yue, Z. W., Wang, Z. H., Li, Z. H., Ge, H. H., & Li,Y. J. (2011). Inhibition of copper corrosion in sodium chloride solution by the self-assembled monolayer of sodium diethyldithiocarbamate. Corrosion Science, 53, 1999-2005.
Yang, W., & Parr, R. G. (1985). Proc. Natl, Hardness, Softness and the Fukui Function in the Electronic Theory of Metals and Catalysis. Acad. Sci., 82, 6723-6726.
Al-Mubarak, N. A., Khaled, K. F., Hamed, M. N. H., Abdel-Azim, K. M., & Abdelshafi, N. S. (2010). Corrosion inhibition of copper in chloride media by 2-mercapto-4-(p-methoxyphenyl)-6-oxo-1,6-dihydropyrimidine-5-carbonitrile: Electrochemical and theoretical study. Arab. J. Chem., 3, 233-242.