Determination of the Composition and Functional Activity of the Conjugates of Colloidal Gold and Antibodies
 
More details
Hide details
1
A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Russia
CORRESPONDING AUTHOR
Dmitriy V. Sotnikov   

A.N. Bach Institute of Biochemistry, Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences, Leninsky prospect 33, Moscow, Russia
Publish date: 2017-10-27
 
Eurasian J Anal Chem 2016;11(3):169–179
KEYWORDS
ABSTRACT
This article describes a method for estimating the composition of conjugates of gold nanoparticles with antibodies and its binding capacity for the antigen. The conjugates are separated in first order from the unbound antibodies by centrifugation after synthesis, and then the concentration of unbound antibodies in the supernatant is analysed by an enzyme immunoassay (ELISA). Conclusions regarding the composition of these conjugates are made on the basis of the difference between the concentrations of the added and the unbound antibodies. This approach protects against the influence of nanoparticles on the label, and the high precision of the immunosorbent assay can reliably detect even small changes in the concentration of antibodies caused by the immobilisation. The amount of antigen binding to the obtained conjugate is registered, and thus the stored reactivity of immobilised antibodies is assessed in the same system. The developed method was applied to characterise colloidal gold conjugates with anti-species antibodies (sheep antibodies to human immunoglobulin). It is shown that in the course of the interaction between the immobilized sheep antibodies and free human immunoglobulins, not more that 12% of the binding sites of the sheep antibodies are able to bind the human immunoglobulins.
 
REFERENCES (30)
1.
Hermanson, G. T. (2008). Bioconjugate Techniques, 2nd Edition, Academic Press: San Diego, p 1202.
 
2.
Rapley, R. & Walker, J. M. (2008). Molecular biomethods handbook, 2nd Edition, Humana Press: Totowa, p 1066.
 
3.
Sapsford, K. E., Algar, W. R., Berti, L., Gemmill, K. B., Casey, B. J., Oh, E., Stewart, M. H. & Medintz, I. L. (2013). Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chemical Reviews 113, 1904.
 
4.
Dzantiev, B. B., Byzova, N. A., Urusov, A. E. & Zherdev, A. V. (2014). Immunochromatographic methods in food analysis. Trends in Analytical Chemistry 55, 81.
 
5.
Wong, R. C. & Tse, H. Y. (2009). Lateral Flow Immunoassay, Humana Press: New York, р 224.
 
6.
Zeng, S., Yong, K. T., Roy, I., Dinh, X. Q., Yu, X. & Luan, F. (2011). A review on functionalized gold nanoparticles for biosensing applications. Plasmonics 6, 491.
 
7.
Sapsford, K. E., Tyner, K. M., Dair, B. J., Deschamps, J. R. & Medintz, I. L. (2011). Analyzing nanomaterial bioconjugates: a review of current and emerging purification and characterization techniques. Analytical Chemistry 83, 4453.
 
8.
Kaur, K. & Forrest, J. A. (2012). Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Langmuir 28, 2736.
 
9.
De Roe, C., Courtoy, P. J. & Baudhuin, P. (1987). A model of protein-colloidal gold interactions. Journal of Histochemistry & Cytochemistry 35, 1191.
 
10.
Sotnikov, D. V., Zherdev, A. V. & Dzantiev, B. B. (2014). Development and application of a label-free fluorescence method for determining the composition of gold nanoparticle–protein conjugates. International Journal of Molecular Sciences 16, 907.
 
11.
Hong, S. H., Kim, M., Ahn, J. H. & Yeo, W. S. (2013). Multiplexed quantification of surface-bound proteins on gold nanoparticles. Analytical Methods 5, 3816.
 
12.
Zhang, D., Neumann, O., Wang, H., Yuwono, V. M., Barhoumi, A., Perham, M., Hartgerink, J. D., Wittung-Stafshede, P. & Halas, N. J. (2009). Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Letters 9, 666.
 
13.
Bell, N. C., Minelli C. & Shard, A. G. (2013). Quantitation of IgG protein adsorption to gold nanoparticles using particle size measurement. Analytical Methods 5, 4591.
 
14.
Mullen, D. G., Desai, A. M., Waddell, J. N., Cheng, X. M., Kelly, C. V., McNerny, D. Q., Majoros, I. J., Baker, J. R., Sander, L. M., Orr, B. G. & Banaszak Holl, M. M. (2008). The implications of stochastic synthesis for the conjugation of functional groups to nanoparticles. Bioconjugate Chemistry 19, 1748.
 
15.
Pellegrino, T., Sperling, R. A., Alivisatos, A. P. & Parak, W. J. (2008). Gel electrophoresis of gold-DNA nanoconjugates. BioMed Research International, 2007. Article ID 26796.
 
16.
Lees, E. E., Gunzburg, M. J., Nguyen, T. L., Howlett, G. J., Rothacker, J., Nice, E. C., Clayton, A. H. A. & Mulvaney, P. (2008). Experimental determination of quantum dot size distributions, ligand packing densities, and bioconjugation using analytical ultracentrifugation. Nano Letters 8, 2883.
 
17.
Cho, T. J. & Hackley, V. A. (2010). Fractionation and characterization of gold nanoparticles in aqueous solution: asymmetric-flow field flow fractionation with MALS, DLS, and UV–Vis detection. Analytical & Bioanalytical Chemistry 398, 2003.
 
18.
Casals, E., Pfaller, T., Duschl, A., Oostingh, G. J. & Puntes, V. (2010). Time evolution of the nanoparticle protein corona. ACS Nano 4, 3623.
 
19.
Tsai, D. H., DelRio, F. W., Keene, A. M., Tyner, K. M., MacCuspie, R. I., Cho, T. J., Zachariah, M. R. & Hackley, V. A. (2011). Adsorption and conformation of serum albumin protein on gold nanoparticles investigated using dimensional measurements and in situ spectroscopic methods. Langmuir 27, 2464.
 
20.
Dominguez-Medina, S., McDonough, S., Swanglap, P., Landes, C. F. & Link, S. (2012). In situ measurement of bovine serum albumin interaction with gold nanospheres. Langmuir 28, 9131.
 
21.
Lacerda, S. H. D. P., Park, J. J., Meuse, C., Pristinski, D., Becker, M. L., Karim, A. & Douglas, J. F. (2010). Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4, 365.
 
22.
Chakraborty, S., Joshi, P., Shanker, V., Ansari, Z. A., Singh, S. P. & Chakrabarti, P. (2011). Contrasting effect of gold nanoparticles and nanorods with different surface modifications on the structure and activity of bovine serum albumin. Langmuir 27, 7722.
 
23.
Naveenraj, S., Anandan, S., Kathiravan, A., Renganathan, R. & Ashokkumar, M. (2010). The interaction of sonochemically synthesized gold nanoparticles with serum albumins. Journal of Pharmaceutical & Biomedical Analysis 53, 804.
 
24.
Brewer, S. H., Glomm, W. R., Johnson, M. C., Knag, M. K. & Franzen, S. (2005). Probing BSA binding to citrate-coated gold nanoparticles and surfaces. Langmuir 21, 9303.
 
25.
Sen, T., Haldar, K. K. & Patra, A. (2008). Au nanoparticle-based surface energy transfer probe for conformational changes of BSA protein. The Journal of Physical Chemistry C 112, 17945.
 
26.
Kang, K. A., Wang, J., Jasinski, J. B. & Achilefu, S. (2011). Fluorescence manipulation by gold nanoparticles: from complete quenching to extensive enhancement. Journal of Nanobiotechnology 9, 16.
 
27.
Tu, Y., Wu, P., Zhang, H. & Cai, C. (2012). Fluorescence quenching of gold nanoparticles integrating with a conformation-switched hairpin oligonucleotide probe for microRNA detection. Chemical Communications 48, 10718.
 
28.
Frens, G. (1973). Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241, 20.
 
29.
Safenkova, I., Zherdev, A. & Dzantiev, B. (2012). Factors influencing the detection limit of the lateral-flow sandwich immunoassay: a case study with potato virus X. Analytical & Bioanalytical Chemistry 403, 1595.
 
30.
Byzova, N. A., Zvereva, E. A., Zherdev, A. V., Eremin, S. A. & Dzantiev, B. B. (2010). Rapid pretreatment-free immunochromatographic assay of chloramphenicol in milk. Talanta 81, 843.
 
eISSN:1306-3057