RESEARCH PAPER
Differential Pulse Voltammetric Determination of Penicillin G at Boron Doped Diamond Electrode
 
 
More details
Hide details
1
Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology,, Pakistan
2
Chemistry, Government College & Postgraduate Center, Pakistan
Online publish date: 2019-01-05
Publish date: 2019-01-05
 
Eurasian J Anal Chem 2019;14(1):em20190102
KEYWORDS:
TOPICS:
ABSTRACT:
Background:
Concerns about accumulation of persistent pollutants such as penicillin G (PG) in aquatic environments results in the demand for analytical methods suitable for their fast, sensitive and simple determination. This study assesses the effectiveness of (DPV) method coupled with boron doped diamond electrode (BDDE) for determination of PG in aquatic samples. Britton-Robinson buffer (BRB) was used as a supporting electrolyte. Results showed that the DPV technique is suitable for the determination of PG in both drinking and river water model samples. PG gives an anodic DPV peak in the range from +800 to +1010 mV, depending on the pH of BRB. The best developed peak was obtained in BRB of pH 4, at the potential of +900 mV. Calibration curves are linear (R>0.99) in the range of 1- 9 µM of PG with the limit of quantitation (LOQ) of 1.5 µM and the limit of detection (LOD) of 0.23 µM. The method is not influenced by inorganic ions present in measured solutions, there are no problems with electrode passivation by products of PG anodic oxidation and it is accurate (RSD of 1.7-2.3%). Our developed is used as a simple, accurate, reliable and robust method for PG determination

CORRESPONDING AUTHOR:
Munawar Saeed Qureshi   
Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology,, 64200, Rahim Yar Khan, Pakistan
 
REFERENCES (41):
1. De la Torre, A., Concejero, M. A., & Martínez, M. A. (2012). Concentrations and sources of an emerging pollutant, decabromodiphenylethane (DBDPE), in sewage sludge for land application. Journal of Environmental Sciences, 24(3), 558-563.
2. Peysson, W., & Vulliet, E. (2013). Determination of 136 pharmaceuticals and hormones in sewage sludge using quick, easy, cheap, effective, rugged and safe extraction followed by analysis with liquid chromatography–time-of-flight-mass spectrometry. Journal of Chromatography A, 1290, 46-61.
3. Meffe, R., & de Bustamante, I. (2014). Emerging organic contaminants in surface water and groundwater: a first overview of the situation in Italy. Science of the Total Environment, 481, 280-295.
4. Moreno-González, R., Campillo, J. A., García, V., & León, V. M. (2013). Seasonal input of regulated and emerging organic pollutants through surface watercourses to a Mediterranean coastal lagoon. Chemosphere, 92(3), 247-257.
5. Post, G. B., Cohn, P. D., & Cooper, K. R. (2012). Perfluorooctanoic acid (PFOA), an emerging drinking water contaminant: a critical review of recent literature. Environmental research, 116, 93-117.
6. Schriks, M., Heringa, M. B., van der Kooi, M. M., de Voogt, P., & van Wezel, A. P. (2010). Toxicological relevance of emerging contaminants for drinking water quality. Water research, 44(2), 461-476.
7. Evaggelopoulou, E. N., & Samanidou, V. F. (2013). Development and validation of an HPLC method for the determination of six penicillin and three amphenicol antibiotics in gilthead seabream (Sparus Aurata) tissue according to the European Union Decision 2002/657/EC. Food chemistry, 136(3-4), 1322-1329.
8. Sørensen, L. K., Snor, L. K., Elkær, T., & Hansen, H. (1999). Simultaneous determination of seven penicillins in muscle, liver and kidney tissues from cattle and pigs by a multiresidue high-performance liquid chromatographic method. Journal of Chromatography B: Biomedical Sciences and Applications, 734(2), 307-318.
9. Heller, D. N., Smith, M. L., & Chiesa, O. A. (2006). LC/MS/MS measurement of penicillin G in bovine plasma, urine, and biopsy samples taken from kidneys of standing animals. Journal of Chromatography B, 830(1), 91-99.
10. Junza, A., Amatya, R., Barrón, D., & Barbosa, J. (2011). Comparative study of the LC–MS/MS and UPLC–MS/MS for the multi-residue analysis of quinolones, penicillins and cephalosporins in cow milk, and validation according to the regulation 2002/657/EC. Journal of Chromatography B, 879(25), 2601-2610.
11. Gbylik-Sikorska, M., Posyniak, A., Sniegocki, T., & Zmudzki, J. (2015). Liquid chromatography–tandem mass spectrometry multiclass method for the determination of antibiotics residues in water samples from water supply systems in food-producing animal farms. Chemosphere, 119, 8-15.
12. Zanoni, M. V. B., Fogg, A. G., Barek, J., & Zima, J. (1997). Electrochemical investigations of reactive dyes; cathodic stripping voltammetric determination of anthraquinone-based chlorotriazine dyes at a hanging mercury drop electrode. Analytica Chimica Acta, 349(1-3), 101-109.
13. Belal, T. S., Mahrous, M. S., Abdel-Khalek, M. M., Daabees, H. G., & Khamis, M. M. (2014). Validated HPTLC method for the simultaneous determination of alfuzosin, terazosin, prazosin, doxazosin and finasteride in pharmaceutical formulations. Analytical Chemistry Research, 1, 23-31.
14. Liu, C., Wang, H., Jiang, Y., & Du, Z. (2011). Rapid and simultaneous determination of amoxicillin, penicillin G, and their major metabolites in bovine milk by ultra-high-performance liquid chromatography–tandem mass spectrometry. Journal of Chromatography B, 879(7-8), 533-540.
15. Guo, M., Xie, X., Jia, J., Liang, Z., Fan, C., & Han, P. (2015). Experimental study and theoretical calculation on the conductivity and stability of praseodymium doped tin oxide electrode. Electrochimica Acta, 151, 177–185.
16. Ghassempour, A., Davarani, S. S. H., Noroozi, M., & Shamsipur, M. (2005). Determination of ternary mixtures of penicillin G, benzathine and procaine by liquid chromatography and factorial design study. Talanta, 65(4), 1038-1044.
17. Thomas, A., Ukpoma, O. K., Inman, J. A., Kaul, A. K., Beeson, J. H., & Roberts, K. P. (2008). Quantification of penicillin G during labor and delivery by capillary electrophoresis. Journal of biochemical and biophysical methods, 70(6), 992-998.
18. Michalska, K., Pajchel, G., & Tyski, S. (2004). Capillary electrophoresis method for simultaneous determination of penicillin G, procaine and dihydrostreptomycin in veterinary drugs. Journal of Chromatography B, 800(1-2), 203-209.
19. Chorti, P., Fischer, J., Vyskocil, V., Economou, A., & Barek, J. (2014). Voltammetric determination of insecticide thiamethoxam on silver solid amalgam electrode. Electrochimica Acta, 140, 5-10.
20. dos Santos, L. B., Abate, G., & Masini, J. C. (2004). Determination of atrazine using square wave voltammetry with the Hanging Mercury Drop Electrode (HMDE). Talanta, 62(4), 667-674.
21. Dejmkova, H., Barek, J., & Zima, J. (2011). Determination of aminonitrophenols in hair dyes using a carbon paste electrode and a boron-doped diamond film electrode–a comparative study. International Journal of Electrochemical Science, 6, 3550-3563..
22. Švorc, Ľ., Sochr, J., Tomčík, P., Rievaj, M., & Bustin, D. (2012). Simultaneous determination of paracetamol and penicillin V by square-wave voltammetry at a bare boron-doped diamond electrode. Electrochimica Acta, 68, 227-234.
23. Hassen, W. M., Abdelghani, A., Vonna, L., Cherif, K., Boussaid, M., & Maaref, M. A. (2007). Electrochemical properties and topology of gold electrodes with adsorbed penicillin G for biosensor applications. Sensors and Actuators B: Chemical, 120(2), 621-627.
24. Forsman, U. L. F. (1983). Cathodic stripping voltammetric determination of trace amounts of penicillins. Analytica Chimica Acta, 146, 71-86.
25. Wirzal, M. D. H., Yusoff, A. R. M., Zima, J., & Barek, J. (2013). Degradation of Ampicillin and Penicillin G using Anodic Oxidation. Int. J. Electrochem. Sci, 8, 8978-8988.
26. Švorc, Ľ., Sochr, J., Rievaj, M., Tomčík, P., & Bustin, D. (2012). Voltammetric determination of penicillin V in pharmaceutical formulations and human urine using a boron-doped diamond electrode. Bioelectrochemistry, 88, 36-41.
27. Hwang, G. H., Han, W. K., Park, J. S., & Kang, S. G. (2008). Determination of trace metals by anodic stripping voltammetry using a bismuth-modified carbon nanotube electrode. Talanta, 76(2), 301-308.
28. Wirzal, M. D. H., Yusoff, A. R. M., Zima, J., & Barek, J. (2015). Voltammetric Determination of Nifedipine at a Hanging Mercury Drop Electrode and a Mercury Meniscus Modified Silver Amalgam Electrode. Int. J. Electrochem. Sci, 10, 4571-4584..
29. Lourenço, A. S., Sanches, F. A., Magalhães, R. R., Costa, D. J., Ribeiro, W. F., Bichinho, K. M., ... & Araújo, M. C. (2014). Electrochemical oxidation and electroanalytical determination of xylitol at a boron-doped diamond electrode. Talanta, 119, 509-516.
30. Pecková, K., Musilová, J., & Barek, J. (2009). Boron-doped diamond film electrodes—new tool for voltammetric determination of organic substances. Critical Reviews in Analytical Chemistry, 39(3), 148-172.
31. Švorc, Ľ., Rievaj, M., & Bustin, D. (2013). Green electrochemical sensor for environmental monitoring of pesticides: Determination of atrazine in river waters using a boron-doped diamond electrode. Sensors and Actuators B: Chemical, 181, 294-300.
32. Barek, J., Jandová, K., Pecková, K., & Zima, J. (2007). Voltammetric determination of aminobiphenyls at a boron-doped nanocrystalline diamond film electrode. Talanta, 74(3), 421-426.
33. Bandžuchová, L., Švorc, Ľ., Vojs, M., Marton, M., Michniak, P., & Chýlková, J. (2014). Self-assembled sensor based on boron-doped diamond and its application in voltammetric analysis of picloram. International Journal of Environmental Analytical Chemistry, 94(9), 943-953.
34. Svítková, J., Ignat, T., Švorc, Ľ., Labuda, J., & Barek, J. (2016). Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Critical reviews in analytical chemistry, 46(3), 248-256.
35. Cinková, K., Švorc, Ľ., Šatkovská, P., Vojs, M., Michniak, P., & Marton, M. (2016). Simple and rapid quantification of folic acid in pharmaceutical tablets using a cathodically pretreated highly boron-doped polycrystalline diamond electrode. Analytical Letters, 49(1), 107-121.
36. Samiec, P., Švorc, Ľ., Stanković, D. M., Vojs, M., Marton, M., & Navrátilová, Z. (2017). Mercury-free and modification-free electroanalytical approach towards bromazepam and alprazolam sensing: A facile and efficient assay for their quantification in pharmaceuticals using boron-doped diamond electrodes. Sensors and Actuators B: Chemical, 245, 963-971.
37. Cinková, K., Zbojeková, N., Vojs, M., Marton, M., Samphao, A., & Švorc, Ľ. (2015). Electroanalytical application of a boron-doped diamond electrode for sensitive voltammetric determination of theophylline in pharmaceutical dosages and human urine. Analytical Methods, 7(16), 6755-6763.
38. Dejmkova, H., Scampicchio, M., Zima, J., Barek, J., & Mannino, S. (2009). Determination of total phenols in foods by boron doped diamond electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(9), 1014-1018.
39. Pecková, K., Jandová, K., Maixnerová, L., Swain, G. M., & Barek, J. (2009). Amperometric Determination of Aminobiphenyls Using HPLC‐ED with Boron‐Doped Diamond Electrode. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 21(3‐5), 316-324.
40. Hupert, M., Muck, A., Wang, J., Stotter, J., Cvackova, Z., Haymond, S., ... & Swain, G. M. (2003). Conductive diamond thin-films in electrochemistry. Diamond and Related Materials, 12(10-11), 1940-1949.
41. Lawrence, N. S., Pagels, M., Meredith, A., Jones, T. G., Hall, C. E., Pickles, C. J., ... & Jiang, L. (2006). Electroanalytical applications of boron-doped diamond microelectrode arrays. Talanta, 69(4), 829-834.
eISSN:1306-3057