RESEARCH PAPER
Electrooxidation and Determination of Estriol Using a Surfactant Modified Nanotube Paste Electrode
 
More details
Hide details
1
Department of Chemistry,, FMKMC College, Madikeri, Mangalore University Constituent College, Karnataka, India, India
2
2Departamento de Ingeniería de Proyectos, Centro Universitario de Ciencias Exactas Ingenierías, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara Jal., C.P. 44430, México, Mexico
Online publish date: 2019-01-05
Publish date: 2019-01-05
 
Eurasian J Anal Chem 2019;14(1):em20190001
KEYWORDS:
TOPICS:
ABSTRACT:
The electrocatalytic oxidation of Estriol (ET) has been studied by surfactant modified nanotube paste electrode. The sensor was prepared using carbon nanotubes and silicone oil, Carbon nanotube paste electrode (CNTPE) modified with Sodium dodecyl sulfate (SDS) surfactant, the modified electrode highly sensitive for the determination of ET. Cyclic voltammetry (CV) and differential voltammetry (DPV) techniques were used to investigate the ET. A enrich improvement in the microscopic area of the electrode produced in a increase of the peak current of ET oxidation. CV has been used as a electrochemical sensitive analytical method for the detection of small amounts of ET, Two linear ranges have been procured for the ET concentration between the ranges of 6.0 × 10−6 to 2.0 ×10−5 and 2.5 × 10−5 to 1.5 × 10−4 M ET. The detection limit of this electrode is 3.2×10−7 M and the quantification limit is 10×10−7 M. This sensor has a remarkably good sensitivity for the ET determination in the presence of real samples. The recovery for the ET detection in clinical sample was obtained as 97.2-102 % with a good RSD of 4.2%, (on the basis of 5 repeated determinations). These good qualities make the fabricated sensor suitable for the experiments of the trace amounts of ET in pharmaceutical and clinical preparations.

CORRESPONDING AUTHOR:
J.G. Manjuntha   
Department of Chemistry,, FMKMC College, Madikeri, Mangalore University Constituent College, Karnataka, India, madikeir, 571201, madikeri, India
 
REFERENCES (55):
1. Beitollahi, H., Karimi-Maleh, H., & Khabazzadeh, H. (2008). Epinephrine in the presence of norepinephrine using carbon paste electrode modified with carbon nanotubes and novel 2-(4-Oxo-3-phenyl-3, 4-dihydro-quinazolinyl)-N′-phenyl-hydrazinecarbothioamide. Anal Chem, 80, 9848-9851.
2. Tajik, S., Taher, M. A., & Beitollahi, H. (2014). Application of a new ferrocene-derivative modified-graphene paste electrode for simultaneous determination of isoproterenol, acetaminophen and theophylline. Sensors and Actuators B: Chemical, 197, 228-236.
3. Taleat, Z., Ardakani, M. M., Naeimi, H., Beitollahi, H., Nejati, M., & Zare, H. R. (2008). Electrochemical behavior of ascorbic acid at a 2, 2′-[3, 6-dioxa-1, 8-octanediylbis (nitriloethylidyne)]-bis-hydroquinone carbon paste electrode. Analytical Sciences, 24(8), 1039-1044.
4. Foroughi, M. M., Beitollahi, H., Tajik, S., Hamzavi, M., & Parvan, H. (2014). Hydroxylamine electrochemical sensor based on a modified carbon nanotube paste electrode: application to determination of hydroxylamine in water samples. Int. J. Electrochem. Sci, 9, 2955-2965.
5. Mazloum-Ardakani, M., Ganjipour, B., Beitollahi, H., Amini, M. K., Mirkhalaf, F., Naeimi, H., & Nejati-Barzoki, M. (2011). Simultaneous determination of levodopa, carbidopa and tryptophan using nanostructured electrochemical sensor based on novel hydroquinone and carbon nanotubes: application to the analysis of some real samples. Electrochimica Acta, 56(25), 9113-9120.
6. Mohammadi, S., Beitollahi, H., & Mohadesi, A. (2013). Electrochemical behaviour of a modified carbon nanotube paste electrode and its application for simultaneous determination of epinephrine, uric acid and folic acid. Sensor Letters, 11(2), 388-394.
7. Beitollahi, H., Raoof, J. B., Karimi-Maleh, H., & Hosseinzadeh, R. (2012). Electrochemical behavior of isoproterenol in the presence of uric acid and folic acid at a carbon paste electrode modified with 2, 7-bis (ferrocenyl ethyl) fluoren-9-one and carbon nanotubes. Journal of Solid State Electrochemistry, 16(4), 1701-1707.
8. Manjunatha, J. G., Deraman, M., Basri, N. H., Nor, N. S. M., Talib, I. A., & Ataollahi, N. (2014). Sodium dodecyl sulfate modified carbon nanotubes paste electrode as a novel sensor for the simultaneous determination of dopamine, ascorbic acid, and uric acid. Comptes Rendus Chimie, 17(5), 465-476.
9. Manjunathaa, J. G., Deraman, M., Basri, N. H., & Talib, I. A. (2014). Selective detection of dopamine in the presence of uric acid using polymerized phthalo blue film modified carbon paste electrode. In Advanced Materials Research, 895, 447-451.
10. Manjunatha, J. G., Deraman, M., Basri, N. H., & Talib, I. A. (2018). Fabrication of poly (Solid Red A) modified carbon nano tube paste electrode and its application for simultaneous determination of epinephrine, uric acid and ascorbic acid. Arabian journal of chemistry, 11(2), 149-158.
11. Manjunatha, J. G., Deraman, M., & Basri, N. H. (2015). Electrocatalytic detection of dopamine and uric acid at poly (basic blue b) modified carbon nanotube paste electrode. Asian Journal of Pharmaceutical and Clinical Research, 8(5), 48-53.
12. Manjunatha, J. G. (2016). Poly (Nigrosine) modified electrochemical sensor for the determination of dopamine and uric acid: a cyclic voltammetric study. Int J ChemTech Res, 9(2), 136e46.
13. Manjunatha, J. G. G. (2018). A novel poly (glycine) biosensor towards the detection of indigo carmine: A voltammetric study. Journal of food and drug analysis, 26(1), 292-299.
14. Levitz, M., & Young, B.K. (1977). Estrogens in pregnancy. Vitam Horm; 35; 109-147.
15. Lindberg, B. S., Johansson, E. D., & Nilsson, B. A. (1974). Plasma levels of nonconjugated oestradiol‐17β and oestriol in high risk pregnancies. Acta Obstetricia et Gynecologica Scandinavica, 53(S32), 37-51.
16. Tagawa, N., Tsuruta, H., Fujinami, A., & Kobayashi, Y. (1999). Simultaneous determination of estriol and estriol 3-sulfate in serum by column-switching semi-micro high-performance liquid chromatography with ultraviolet and electrochemical detection. Journal of Chromatography B: Biomedical Sciences and Applications, 723(1-2), 39-45.
17. Podesta, A., Smith, C. J., Villani, C., & Montagnoli, G. (1996). Shared reaction in solid-phase immunoassay for estriol determination. Steroids, 61(11), 622-626.
18. Caban, M., Lis, E., Kumirska, J., & Stepnowski, P. (2015). Determination of pharmaceutical residues in drinking water in Poland using a new SPE-GC-MS (SIM) method based on Speedisk extraction disks and DIMETRIS derivatization. Science of the Total Environment, 538, 402-411.
19. Schiøler, V., & Thode, J. (1988). Six direct radioimmunoassays of estradiol evaluated. Clinical chemistry, 34(5), 949-952.
20. Worthman, C. M., Stallings, J. F., & Hofman, L. F. (1990). Sensitive salivary estradiol assay for monitoring ovarian function. Clinical chemistry, 36(10), 1769-1773.
21. Hanning, A., Lindberg, P., Westberg, J., & Roeraade, J. (2000). Laser-induced fluorescence detection by liquid core waveguiding applied to DNA sequencing by capillary electrophoresis. Analytical chemistry, 72(15), 3423-3430.
22. Vittal, R., Gomathi, H., & Kim, K. J. (2006). Beneficial role of surfactants in electrochemistry and in the modification of electrodes. Advances in colloid and interface science, 119(1), 55-68.
23. Guan, S., & Nelson, B. J. (2006). Magnetic composite electroplating for depositing micromagnets. Journal of microelectromechanical systems, 15(2), 330-337.
24. Fuchs-Godec, R. (2006). The adsorption, CMC determination and corrosion inhibition of some N-alkyl quaternary ammonium salts on carbon steel surface in 2 M H2SO4. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 280(1-3), 130-139.
25. Mamak, M., Coombs, N., & Ozin, G. (2000). Self-assembling solid oxide fuel cell materials: mesoporous yttria-zirconia and metal-yttria-zirconia solid solutions. Journal of the American Chemical Society, 122(37), 8932-8939.
26. Jiang, J., & Kucernak, A. (2002). Nanostructured platinum as an electrocatalyst for the electrooxidation of formic acid. Journal of Electroanalytical Chemistry, 520(1-2), 64-70.
27. Gouveia‐Caridade, C., Pauliukaite, R., & Brett, C. M. (2006). Influence of Nafion Coatings and Surfactant on the Stripping Voltammetry of Heavy Metals at Bismuth‐Film Modified Carbon Film Electrodes. Electroanalysis: An International Journal Devoted to Fundamental and Practical Aspects of Electroanalysis, 18(9), 854-861.
28. Rusling, J. F. (1997). Molecular aspects of electron transfer at electrodes in micellar solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 123, 81-88.
29. Hoyer, B., & Jensen, N. (2006). Stabilization of the voltammetric serotonin signal by surfactants. Electrochemistry communications, 8(2), 323-328.
30. Pandey, S. (2016). Highly sensitive and selective chemiresistor gas/vapor sensors based on polyaniline nanocomposite: a comprehensive review. Journal of Science: Advanced Materials and Devices, 1(4), 431-453.
31. Pandey, S., & Nanda, K. K. (2015). Au nanocomposite based chemiresistive ammonia sensor for health monitoring. ACS Sensors, 1(1), 55-62.
32. Pandey, S. (2017). A comprehensive review on recent developments in bentonite-based materials used as adsorbents for wastewater treatment. Journal of Molecular Liquids, 241, 1091-1113..
33. Pandey, S. A. D. A. N. A. N. D., & Nanda, K. (2013). One-dimensional nanostructure based chemiresistor sensor. Nanotechnology, 10, 1-17.
34. Schaftenaar, G., & Noordik, J. H. (2000). Molden: a pre-and post-processing program for molecular and electronic structures. Journal of computer-aided molecular design, 14(2), 123-134..
35. Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of chemical physics, 98(7), 5648-5652.
36. Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 37(2), 785–789.
37. McLean, A. D., & Chandler, G. S. (1980). Contracted Gaussian basis sets for molecular calculations. I. Second row atoms, Z= 11–18. The Journal of Chemical Physics, 72(10), 5639-5648.
38. Krishnan, R. B. J. S., Binkley, J. S., Seeger, R., & Pople, J. A. (1980). Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions. The Journal of Chemical Physics, 72(1), 650-654.
39. Geudtner ,G., Calaminici, P., DomÃŋnguez-Soria, V.D., Carmona-EspÃŋndola, J., Moreno, J.R.F., Del Campo, J.M., Gamboa, G.U., Goursot, A., KÃűster, A.M., Reveles, J.U., Mineva, T., Perez, J.M.V., Vela A., Gutierrez B.Z., & Salahub, D.R. deMon2k. (2012). Wiley Interdiscip Rev Comput Mol Sci., 2, 548–55.
40. Flores-Moreno, R., Pineda-Urbina, K., & Gómez-Sandoval, Z. (2012). Sinapsis, Version XII-V, Sinapsis developers, Guadalajara..
41. Flores-Moreno, R., Melin, J., Ortiz, J. V., & Merino, G. (2008). Efficient evaluation of analytic Fukui functions. The Journal of chemical physics, 129(22), 224105.
42. Jayaprakash, G. K., Swamy, B. K., Casillas, N., & Flores-Moreno, R. (2017). Analytical Fukui and cyclic voltammetric studies on ferrocene modified carbon electrodes and effect of Triton X-100 by immobilization method. Electrochimica Acta, 258, 1025-1034.
43. Jayaprakash, G. K., & Flores-Moreno, R. (2017). Quantum chemical study of Triton X-100 modified graphene surface. Electrochimica Acta, 248, 225-231.
44. Jayaprakash, G. K., Swamy, B. E. K., Chandrashekar, B. N., & Flores-Moreno, R. (2017). Theoretical and cyclic voltammetric studies on electrocatalysis of benzethonium chloride at carbon paste electrode for detection of dopamine in presence of ascorbic acid. Journal of Molecular Liquids, 240, 395-401.
45. Kudur Jayaprakash, G., Casillas, N., Astudillo-Sánchez, P. D., & Flores-Moreno, R. (2016). Role of defects on regioselectivity of nano pristine graphene. The Journal of Physical Chemistry A, 120(45), 9101-9108.
46. Parr, R. G., & Yang, W. (1984). Density functional approach to the frontier-electron theory of chemical reactivity. Journal of the American Chemical Society, 106(14), 4049-4050.
47. Flores-Moreno, R. (2009). Symmetry conservation in Fukui functions. Journal of chemical theory and computation, 6(1), 48-54.
48. Cesarino, I., Cincotto, F. H., & Machado, S. A. (2015). A synergistic combination of reduced graphene oxide and antimony nanoparticles for estriol hormone detection. Sensors and Actuators B: Chemical, 210, 453-459.
49. Zhang, F., Gu, S., Ding, Y., Zhang, Z., & Li, L. (2013). A novel sensor based on electropolymerization of β-cyclodextrin and L-arginine on carbon paste electrode for determination of fluoroquinolones. Analytica chimica acta, 770, 53-61.
50. Laviron, E. (1974). Adsorption, autoinhibition and autocatalysis in polarography and in linear potential sweep voltammetry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 52(3), 355-393.
51. Kushwaha, H. S., Sao, R., & Vaish, R. (2014). Label free selective detection of estriol using graphene oxide-based fluorescence sensor. Journal of Applied Physics, 116(3), 034701.
52. Jodar, L. V., Santos, F. A., Zucolotto, V., & Janegitz, B. C. (2018). Electrochemical sensor for estriol hormone detection in biological and environmental samples. Journal of Solid State Electrochemistry, 22(5), 1431-1438.
53. Santos, K. D., Braga, O. C., Vieira, I. C., & Spinelli, A. (2010). Electroanalytical determination of estriol hormone using a boron-doped diamond electrode. Talanta, 80(5), 1999-2006.
54. Lin, X., & Li, Y. (2006). A sensitive determination of estrogens with a Pt nano-clusters/multi-walled carbon nanotubes modified glassy carbon electrode. Biosensors and Bioelectronics, 22(2), 253-259.
55. Manjunatha, J. G. (2017). Electroanalysis of estriol hormone using electrochemical sensor. Sensing and bio-sensing research, 16, 79-84.
eISSN:1306-3057