Evaluation of Antioxidant Activity and Phenolic Composition of Opuntia ficus-indica Cladodes Collected from Moroccan Settat Region
More details
Hide details
Université Hassan 1er, MOROCCO
Muğla Sıtkı Koçman University, TURKEY
Dicle University, TURKEY
Online publish date: 2016-12-07
Publish date: 2016-12-07
Eurasian J Anal Chem 2017;12(1):105–117
Opuntia ficus-indica cladode growing in Settat region of Morocco was freshly consumed and traditionally used in folk medicine for health benefits by the local people. The antioxidant activity and the chemical compounds of it were studied using liquid chromatography-tandem mass spectrometry (LC-MS/MS) and spectrophotometric techniques. The antioxidant activity screened using three complimentary tests; namely, ABTS, DPPH and FRAP activities. In addition, total phenolic, flavonoid and tannins contents of the extracts were also determined as gallic acid, rutin and tannic acid equivalents, respectively. In the extracts, total phenolic content ranged between 73.1±2.1 and 111.2±5.8 mg/g gallic acid equivalents while flavonoid content between 22±2.0 and 27.0±4.0 mg/g rutin equivalents and tannin content between 5.93±0.07 and 6.17±0.06 mg/g tannic acid equivalents. As a conclusion, the results highlighted that cactus cladode is a source of antioxidant phenolic compounds. Thus, the extracts of cladodes will be probably used for the development of safe food products and/or additives.
Mehmet Öztürk   
Muğla Sıtkı Koçman University, Food Application and Research Center, Muğla, Turkey
1. Brewer, M. S. (2011). Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf, 10:221–247.
2. Benayad, Z., Martinez-Villaluenga, C., Frias, J., Gomez-Cordoves, C., & Es-Safi, N. E. (2014). Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Ind. Crops Prod, 62:412–420.
3. Rice-Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radical Res, 22:375–383.
4. Galati, E. M., Tripodo, M. M., Trovato, A., Miceli, N., & Monforte, M. T. (2002). Biological effect of Opuntia ficus indica (L.) Mill. (Cactaceae) waste matter: Note I: diuretic activity. J. Ethnopharmacol, 79:17–21.
5. Mohamed–Yasseen, Y., Barringer, S. A., & Splittstoesser, W. E. (1996). A note on the uses of Opuntia spp. in Central/North America. J Arid Environ, 32:347–353.
6. Griffith, M. P. (2004). The origins of an important cactus crop, Opuntia ficus-indica (Cactaceae): new molecular evidence. Am. J. Bot., 91:1915–1921.
7. Sawaya, W. N., Khalil, J. K., & Al-Mohammad, M. M. (1983). Nutritive value of prickly pear seeds, Opuntia ficus-indica. Plant Foods Hum. Nutr., 33:91–97.
8. Stintzing, F. C., Schieber, A. & Carle, R. (2001). Phytochemical and nutritional significance of cactus pear. Eur. Food Res. Technol., 212:396–407.
9. Feugang, J. M., Konarski, P., Zou, D., Stintzing, F. C., & Zou, C. (2006). Nutritional and medicinal use of Cactus pear (Opuntia spp.) cladodes and fruits. Front Biosci. J. Virtual Libr., 11:2574–2589.
10. Ennouri, M., Fetoui, H., Bourret, E., Zeghal, N., & Attia, H. (2006). Evaluation of some biological parameters of Opuntia ficus indica. 1. Influence of a seed oil supplemented diet on rats. Bioresource Technol., 97:1382–1386.
11. Chavez-Santoscoy, R. A., Gutierrez-Uribe, J. A., & Serna-Saldívar, S. O. (2009). Phenolic composition, antioxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Foods Hum. Nutr., 64:146–152.
12. Cardador-Martínez, A., Jiménez-Martínez, C., & Sandoval, G. (2011). Revalorization of cactus pear (Opuntia spp.) wastes as a source of antioxidants. Food Sci. Technol. Camp., 31:782–788.
13. Morales, P., Ramírez-Moreno, E., Sanchez-Mata, M. de C., Carvalho, A. M., & Ferreira, I. C. F. R. (2012). Nutritional and antioxidant properties of pulp and seeds of two xoconostle cultivars (Opuntia joconostle F.A.C. Weber ex Diguet and Opuntia matudae Scheinvar) of high consumption in Mexico. Food Res. Int., 46:279–285.
14. Rsaissi, N., Bouhache, M., & Bencharki, B. (2013). Allelopathic potential of Barbary fig andlaquo; Opuntia ficus-indica (L.) Mill andraquo; on the germination and growth of wild jujube andlaquo; Ziziphus lotus (L.) Desf. Andraquo. Int. J. Innov. Appl. Stud., 3:205–214.
15. El-Mostafa, K., El Kharrassi, Y., Badreddine, A., Andreoletti, P., Vamecq, J., El Kebbaj, M. S., Latruffe, N., Lizard, G., Nasser, B., & Cherkaoui-Malki, M. (2014). Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules, 19:14879–14901.
16. Sánchez-Moreno, C., Jiménez-Escrig, A., & Saura-Calixto, F. (2000). Study of low-density lipoprotein oxidizability indexes to measure the antioxidant activity of dietary polyphenols. Nutr. Res., 20:941–953.
17. Nijveldt, R. J., van Nood, E., van Hoorn, D. E., Boelens, P. G., van Norren, K., & Van Leeuwen, P. A. (2001). Flavonoids: a review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr., 74:418–425.
18. Park, S-H., Kim, H., & Rhyu, D-Y. (2007). Flavonoids from the Stems of Eastern Picklypear Opuntia humifusa, Cactaceae. J. Appl. Biol. Chem., 50:254–258.
19. Stintzing, F. C., & Carle, R. (2005). Cactus stems (Opuntia spp.): A review on their chemistry, technology, and uses. Mol Nutr. Food Res., 49:175–194.
20. Heim, K. E., Tagliaferro, A. R., & Bobilya, D. J. (2002). Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J. Nutr. Biochem., 13:572–584.
21. Pallarès, V., Fernández-Iglesias, A., Cedó, L., Castell-Auví, A., Pinent, M., Ardévol, A., Salvadó, M. J., Garcia-Vallvé, S., & Blay, M. (2013). Grape seed procyanidin extract reduces the endotoxic effects induced by lipopolysaccharide in rats. Free Radical Biol. Med., 60:107–114.
22. Radi, M., Mahrouz, M., Jaouad, A., Tacchini, M., Aubert, S., Hugues, M., & Amiot, M. J. (1997). Phenolic Composition, Browning Susceptibility, and Carotenoid Content of Several Apricot Cultivars at Maturity. Hortsci., 32:1087–1091.
23. Zhang, S. Y., Zheng, C. G., Yan, X. Y., & Tian, W. X. (2008). Low concentration of condensed tannins from catechu significantly inhibits fatty acid synthase and growth of MCF-7 cells. Biochem. Biophys. Res. Commun., 371:654–658.
24. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic., 16:144–158.
25. Tel, G., Öztürk, M., Duru, M. E., Doğan, B., & Harmandar, M. (2013). Fatty acid composition, antioxidant, anticholinesterase and tyrosinase inhibitory activities of four Serratula species from Anatolia. Rec. Nat. Prod., 7:86–95.
26. Ganjiwale, R., Wadher, S., Yeole, P., & Polshettiwar, S. (2007). Spectrophotometric estimation of total tannins in some ayurvedic eye drops. Indian J Pharm Sci., 69:574.
27. Ertaş, A., Gören, A. C., Haşimi, N., Tolan, V., & Kolak, U. (2015). Evaluation of antioxidant, cholinesterase inhibitory and antimicrobial properties of Mentha longifolia subsp. noeana and its secondary metabolites. Rec. Nat. Prod., 1:105-115.
28. Ertas, A., Boga, M., Yilmaz, M. A., Yesil, Y., Tel, G., Temel, H., Hasimi, N., Gazioglu, I., Öztürk, M., & Ugurlu, P. (2015). A detailed study on the chemical and biological profiles of essential oil and methanol extract of Thymus nummularius (Anzer tea): Rosmarinic acid. Ind. Crop. Prod., 67:336–345.
29. Topçu, G., Öztürk, M., Kuşman, T., Barla-Demirkoz, A. A., Kolak, U., & Ulubelen, A. (2013). Terpenoids, essential oil composition, fatty acid profile, and biological activities of Anatolian Salvia fruticosa Mill. Turk J. Chem., 37:619-632.
30. Duru, M. E., Tel, G., Öztürk, M., & Harmandar, M. (2012). Chemical Composition, Antioxidant and Anticholinesterase Activities of the Essential Oil of Salvia chrysophylla Staph. Rec. Nat. Prod., 6:175-179.
31. Oyaizu, M. (1986). Studies on products of browning reaction-antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr., 44:307–315.
32. Velioglu, Y. S., Mazza, G., Gao, L., & Oomah, B. D. (1998). Antioxidant Activity and Total Phenolics in Selected Fruits, Vegetables, and Grain Products. J. Agric. Food Chem., 46:4113–4117.
33. Nowacka, N., Nowak, R., Drozd, M., Olech, M., Los, R., & Malm. A. (2014). Analysis of phenolic constituents, antiradical and antimicrobial activity of edible mushrooms growing wild in Poland. LWT - Food Sci. Technol., 59:689–694.
34. Al-Farsi, M. A., & Lee, C. Y. (2008). Optimization of phenolics and dietary fibre extraction from date seeds. Food Chem., 108:977–985.
35. Alimi, H., Hfaiedh, N., Bouoni, Z., Hfaiedh, M., Sakly, M., Zourgui, L., & Rhouma, K. B. (2010). Antioxidant and antiulcerogenic activities of Opuntia ficus indica f. inermis root extract in rats. Phytomedicine, 17:1120–1126.
36. Medina-Torres, L., Vernon-Carter, E. J., Gallegos-Infante, J. A., Rocha-Guzman, N. E., Herrera-Valencia, E. E., Calderas, F., & Jiménez-Alvarado, R. (2011). Study of the antioxidant properties of extracts obtained from nopal cactus (Opuntia ficus-indica) cladodes after convective drying. J. Sci. Food Agric., 91:1001–1005.
37. Ben Salem, H., Abdouli, H., Nefzaoui, A., El-Mastouri, A., & Salem, L. B. (2005). Nutritive value, behaviour, and growth of Barbarine lambs fed on old man saltbush (Atriplex nummularia L.) and supplemented or not with barley grains or spineless cactus (Opuntia ficus-indica f. inermis) pads. Small Rumin Res., 59:229–237.
38. Guevara-Figueroa, T., Jiménez-Islas, H., Reyes-Escogido, M. L., Mortensen, A. G., Laursen, B. B., Lin, L-W., De León-Rodríguez, A., Fomsgaard, I. S., & Barba de la Rosa, A. P. (2010). Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J. Food Compos. Anal., 23:525–532.
39. Ginestra, G., Parker, M. L., Bennett, R. N., Robertson, J., Mandalari, G., Narbad, A., Lo Curto, R. B., Bisignano, G., Faulds, C. B., & Waldron, K. W. (2009). Anatomical, Chemical, and Biochemical Characterization of Cladodes from Prickly Pear [Opuntia ficus-indica (L.) Mill.]. J. Agric. Food Chem., 57:10323–10330.
40. Yeddes, N., Chérif, J. K., Guyot, S., Sotin, H., & Ayadi, M. T. (2013). Comparative Study of Antioxidant Power, Polyphenols, Flavonoids and Betacyanins of the Peel and Pulp of Three Tunisian Opuntia Forms. Antioxidants, 2:37–51.
41. Afanas’ev, I. B., Dcrozhko, A. I., Brodskii, A. V., Kostyuk, V. A., & Potapovitch, A. I. (1989). Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem. Pharmacol., 38:1763–1769.
42. Cho, J. Y., Park, S. C., Kim, T. W., Kim, K. S., Song, J. C., Kim, S. K., Lee, H. M., Sung, H. J., Park, H. J., & Song, Y. B., et al. (2006). Radical scavenging and anti-inflammatory activity of extracts from Opuntia humifusa Raf. J. Pharm. Pharmacol., 58:113–119.
43. Dok-Go, H., Lee, K. H., Kim, H. J., Lee, E. H., Lee, J., Song, Y. S., Lee, Y-H., Jin, C., Lee, Y. S., & Cho, J. (2003). Neuroprotective effects of antioxidative flavonoids, quercetin, (+)-dihydroquercetin and quercetin 3-methyl ether, isolated from Opuntia ficus-indica var. saboten. Brain Res., 965:130–136.
44. Piga, A., Caro, A. D., Pinna, I., & Agabbio, M. (2003). Changes in ascorbic acid, polyphenol content and antioxidant activity in minimally processed cactus pear fruits. LWT - Food Sci. Technol., 36:257–262.