Green and Efficient Synthesis of a Novel Series of Indeno-Fused Pyrido [2,3-d] Pyrimidines Using Choline Hydroxide as Eco-Friendly Catalyst in Water
More details
Hide details
Islamic Azad University (Yazd Branch), IRAN
Mohammad Hossein Mosslemin   

Department of Chemistry, Yazd Branch, Islamic Azad University, PO Box 89195-155, Yazd, Iran
Online publication date: 2017-10-09
Publication date: 2017-10-09
Eurasian J Anal Chem 2017;12(Interdisciplinary Perspective on Sciences 7b):1339–1345
A series of 13 aryl indeno[2’,1’:5,6]pyrido[2,3-d]pyrimidine-2,4,6-(3H,5H,11H)-triones, 8 of which are new, were synthesized regioselectively in high yields by a three-component reaction of 1,3-indanedione, an araldehyde and 6-aminopyrimidin-2,4(1H,3H)-dione in the presence of choline hydroxide as catalyst in water. The reaction conditions were mild and did not require additional catalysts. Given the inexpensive, nontoxic, and recyclable nature of the choline hydroxide, these reaction conditions are simple to carry out and environmentally friendly.
Kiyani, H., & Ghiasi, M. (2015). A facile route to Solvent-free efficient one-pot synthesis of Biginelli and Hantzsch compounds catalyzed by potassium phthalimide as a green and reusable organocatalyst the synthesis of polyfunctionalized pyrroles. Res Chem Intermediat., 41, 5177-5203.
Gonzalez-Lopez, M., & Shaw, J. T. (2009). Cyclic anhydrides in formal cycloadditions and multicomponent reactions. Chem. Rev., 109, 164-189.
Dömling, A. (2006). Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry. Chem. Rev., 106, 17-89.
Monfardini, I., Huang, J. W., Beck, B., Cellitti, J. F., Pellecchia, M., & Dömling, A. (2011). Screening multicomponent reactions for X-linked inhibitor of apoptosis-baculoviral inhibitor of apoptosis protein repeats domain binder. J. Med. Chem., 54, 890-900.
Gangjee, A., Adair, O., & Queener, S. F. (1999). Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents:  Synthesis and Biological Activities of 2,4-Diamino-5-methyl-6-[(monosubstituted anilino)methyl]- pyrido[2,3-d]pyrimidines. J. Med. Chem., 42, 2447-2455.
Gangjee, A., Vasudevan, A., & Queener, S. F. (1996). Pneumocystis carinii and Toxoplasma gondii Dihydrofolate Reductase Inhibitors and Antitumor Agents:  Synthesis and Biological Activities of 2,4-Diamino-5-methyl-6-[(monosubstituted anilino)methyl]- pyrido[2,3-d]pyrimidines. J. Med. Chem., 39, 1438-1446.
Hamby, J. M., Connolly Cleo, J. C., Schroeder, M. C., Winter, R. T., Showalter, H. D. H., Panek, R. L., Major, T. C., Olsewski, B., Ryan, M. J., Dahring, T., Lu, G. H., Keiser, J. A., Aneesa, S. C., Kraker, A. C., Slintak, V., Nelson, J. M., Fry, D. W., Bradford, L, Hallak, H., & Doherty, A. M (1997). Structure−Activity Relationships for a Novel Series of Pyrido[2,3-d]pyrimidine Tyrosine Kinase Inhibitors. J. Med. Chem., 40, 2296-2303.
Broom, A. D., Shim, J. L., & Anderson, G. L. (1976). Pyrido[2,3-d]pyrimidines. IV. Synthetic studies leading to various oxopyrido[2,3-d]pyrimidines. J. Org. Chem., 41, 1095-1099.
Grivsky, E. M., Lee, S., Sigel, C. W., Duch, D., S & Nichol, C. A. (1980). Synthesis and antitumor activity of 2,4-diamino-6-(2,5-dimethoxybenzyl)-5-methylpyrido[2,3-d]pyrimidine. J. Med. Chem., 23, 327-329.
Bouzard, D., & K. Krohr, (1993). Antibiotics and Antiviral Compounds. H.A. Kirst and H. Maag (Eds.), VCH, Weinheim., 168.
Quintela, J. M., Peinador, C., Botana, L., Estevez, M., & Riguera, R. (1997). Synthesis and antihistaminic activity of 2-guanadino-3-cyanopyridines and pyrido[2,3-d]-pyrimidines. Bioorg. Med. Chem., 5, 1543-1553.
El-Gazzar, A. B. A., & Hafez, H. N. (2009). Synthesis of 4-substituted pyrido[2,3-d]pyrimidin-4(1H)-one as analgesic and anti-inflammatory agents. Bioorg. Med. Chem. Lett., 19, 3392-3397.
Matsumoto, J., & Minami, S. (1975). Pyrido[2,3-d]pyrimidine antibacterial agents. 3. 8-Alkyl- and 8-vinyl-5,8-dihydro-5-oxo-2-(1-piperazinyl)pyrido[2,3-d]pyrimidine-6-carboxylic acids and their derivatives. J. Med. Chem, 18, 74-79.
Suzuki, N. (1980). Synthesis of Antimicrobial Agents. V. Synthesis and Antimicrobial Activities of Some Heterocyclic Condensed 1, 8-Naphthyridine Derivatives. Chem. Pharm. Bull., 28, 761-768.
Oakes, V., & Rydon, H. N. (1956). Polyazanaphthalenes. Part IV. Further derivatives of 1 : 3 : 5- and 1 : 3 : 8-triazanaphthalene. J. Chem. Soc., 0, 4433-4438.
Degraw, J. I., Kisliuk, R. L, Gaumont, Y., & Baugh, C. M, (1974). Antimicrobial activity of 8-deazafolic acid. J. Med. Chem., 17, 470-471.
VanderWel, S. N., Harvey, P. J., McNamara, D. J., Repine, J. T., Keller, P. R., Quin, J., Booth, R. J., Elliott, W. L., Dobrusin, E. M., Fry, D. W., & Toogood, P. L. (2005). Pyrido[2,3-d]pyrimidin-7-ones as Specific Inhibitors of Cyclin-Dependent Kinase 4. J. Med. Chem., 48, 2371-2387.
Awoutters, F., Vermeire, J., Smeyers, F., Vermote, P., Van Beek, R., & Niemegeers, C. J. E. (1986). Oral antiallergic activity in ascaris hypersensitive dogs: A study of known antihistamines and of the new compounds ramastine (R 57 959) and levocabastine (R 50 547). Drug Dev. Res., 8, 95-102.
Smith R.L., Barette R. J., & Sanders-Bush E. (1995). Neurochemical and behavioral evidence that quipazine-ketanserin discrimination is mediated by serotonin2A receptor. J. Pharmacol. Exp. Ther., 275, 1050-1057.
Hassan, N. A., Hegab, M. I., Hashem, A. I., Abdel-Motti, F. M., Hebah, S. H. A., & Abdel-Megeid, F. M. E. (2007). Three-component, one-pot synthesis of pyrimido[4,5-b]-quinoline and pyrido[2,3-d]pyrimidine derivatives .J. Heterocycl. Chem., 44, 775-782.
Bazgir, A., Moammadi Khanaposhtani, M., Ghahremanzadeh, R., & Abolhasani Soorki, A. (2009). A clean, three-component and one-pot cyclo-condensation to pyrimidine-fused heterocycles. C. R. Chimie., 12, 1287-1295.
Huang, Zh., Hu, Y., Zhou, Y, & Shi, D. (2011). Efficient One-Pot Three-Component Synthesis of Fused Pyridine Derivatives in Ionic Liquid. ACS Comb. Sci., 13, 45-49.
Tu, Sh., Zhang, J., Zhu, X., Xu, J., Zhang, Y., Wang, Q, Jia, R., Jiang, B., & Zhang, J. (2006). New potential inhibitors of cyclin-dependent kinase 4: Design and synthesis of pyrido[2,3-d]pyrimidine derivatives under microwave irradiation. Bioorg. Med. Chem. Lett., 16, 3578-3581.
Shi, F., Ding, J., Zhang, Sh., Hao, W. J., Cheng, Ch., & Sh, Tu, (2011). Substrate-controlled chemoselective synthesis and potent cytotoxic activity of novel 5,6,7-triarylpyrido[2,3-d]pyrimidin-4-one derivatives. Bioorg Med. Chem. Lett., 21, 1554-1558.
Tu, Sh., Cao, L., Zhang, Y., Shao, Q., Zhou, D., & Ch, Li. (2008). An efficient synthesis of pyrido[2,3-d]pyrimidine derivatives and related compounds under ultrasound irradiation without catalyst. Ultrason. Sonochem, 15, 15-20.
Anary-Abbasinejad, M., Shams, N., & Heidari, M, (2012). One-pot synthesis of highly functionalised 1H-pyrazoles from arylcarbohydrazides, cyclohexyl isocyanide, and acetylene diesters. ARKIVOC, 9, 13-20.
Mosslemin, M. H., Shams, N., Esteghamat, H., & Anaraki-Ardakani, H. (2013). An efficient synthesis of functionalized tetrahydro-1H-indeno[2,1-c]pyridine derivatives by a PPh3-promoted condensation reactionbetween acetylene esters and 1,3-dioxo-N-aryl-2,3-dihydro-1H-indene-2-carboxamides. Chin. Chem. Lett, 24, 1095-1098.
Anary-Abbasinejad, M., Farashah, H. D., Hassanabadi, A., Anaraki-Ardakani, H., & Shams, N. (2012). Three-Component Reaction of Triphenylphosphine, Dialkyl Acetylenedicarboxylate, and 2-Aminothiazole or 2-Aminobenzothiazole in the Presence of Arylglyoxals: An Efficient One-Pot Synthesis of Highly Functionalized Pyrroles. Synth. Commun, 42, 1877-1884.
Anaraki-Ardakani, H., Mosslemin, M. H., Anary-Abbasinejad, M, Mirhosseini, S. H., & Shams, N. (2010). A facile route to the synthesis of polyfunctionalized pyrroles. ARKIVOC, 11, 343-349.
Anary-Abbasinejad, M., Shams, N., & Hassanabadi, A. (2010). An Efficient, One-Pot Synthesis of Dialkyl 5-Hydroxy-4-aryl-2,5-dihydrofuran-2,3-dicarboxylate Derivatives. Phosphorus, Sulfur Silicon Relat. Elem, 185, 1823-1829.
Mamaghani, M., Shirini, F., Bassereh, E., & Hossein, Nia, R. (2016). 1,2-Dimethyl-N-butanesulfonic acid imidazolium hydrogen sulfate as efficient ionic liquid catalyst in the synthesis of indeno fused pyrido[2,3-d]pyrimidines. Journal of Saudi Chemical Society, 20, 570-576.
Venketeswara, B. R., Vidyadhara, S., Sasidhar, R. L. C, Ganesh Kumar, T. N. V., & Rokiya, Md. (2016). A Novel Stability Indicating RP-HPLC Method Development and Validation for The Simultaneous Estimation of Losartan Potassium, Ramipril and Hydrochlorothiazide in Bulk and Pharmaceutical Dosage Form. Eurasian Journal of Analytical Chemistry, 11(5), 255-265.
Veena, D. S., & Sanjay, J. D. (2017). Optimization of RP-HPLC Method for Simultaneous Estimation of Lamivudine and Raltegravir in Binary Mixture by Using Design of Experiment . Eurasian Journal of Analytical Chemistry, 12(3), 179-195.