In vitro α-Glucosidase and α-Amylase Enzyme Inhibitory Effects in Elaeagnus angustifolia Leaves Extracts
 
More details
Hide details
1
Anadolu University, TURKEY
2
Ege University, TURKEY
3
Mehmet Akif Ersoy University, TURKEY
CORRESPONDING AUTHOR
Hale Secilmis Canbay   

Department of Bioengineering, Faculty of Engineering and Architecture, Mehmet Akif Ersoy University, Burdur, 15030, Turkey
Online publish date: 2016-12-13
Publish date: 2016-12-13
 
Eurasian J Anal Chem 2017;12(2):117–126
KEYWORDS
TOPICS
ABSTRACT
This study was performed to demonstrate α-glucosidase and α-amylase enzyme inhibitor activities using the methanolic extracts of Elaeagnus angustifolia leaves. Methanolic extracts were prepared by two different extraction methods [accelerated solvent extractor (ASE) and Soxhlet apparatus]. The analytical procedure involved the application of liquid chromatography. Our results showed that the ASE extracts inhibited α-amylase (10-100 µg/ ml) and α-glucosidase (10-50 µg/ml) dose-dependently exhibitedrp inhibitory activities with the extracts [α-amylase (40%) and α-glucosidase (56%)]. RP-HPLC analyses of the methanolic extracts were detected with vanillic acid and 4-hydroxybenzoic acid as the main phenolic acids in all the ASE extracts. Elaeagnus angustifolia leaf extracts may be attributed to the presence of vanillic acid and 4-hydroxybenzoic acid, there by confirming with its traditional use for the management of diabetes mellitus. We implicate that the anti-diabetic activity through in vitro assessments and support to the folkloric use of this plant for controlling type-2 diabetes mellitus in Turkey.
 
REFERENCES (30)
1.
Sabitha, V., Panneerselvam, K., & Ramachandran, S. (2012). In vitro α-glucosidase and α-amylase enzyme inhibitory effects in aqueous extracts of Abelmoscus esculentus (L.) Moench. Asian Pac J Trop Biomed, 2, 162-164. doi:10.1016/S2221-1691(12)60150-6.
 
2.
WHO Expert Committee on Diabetes Mellitus. (1980). Second Report, Technical Report Series 646. WHO, Geneva, 41.
 
3.
Kim, J. S., Kwon, Y. S., Sa, Y. J., & Kim, M.J. (2011). Isolation and identification of sea bucktorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect. J Agr Food Chem, 59, 138-144. doi:10.1021/jf103130a.
 
4.
Hsu, Y. J., Lee, T. H., Chang, C. L. T., Huang, Y. T., & Yang, W. C. (2009). Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J Ethnopharmacol, 122, 379-383.
 
5.
Karthic, K., Kirthiram, K. S., Sadasivam, S., & Thayumanavan, B. (2008). Identification of α-amylase inhibitors from Syzygium cumini Linn seeds. Indian J Exp Biol, 46, 677-680. doi:10.1016/j.jep.2008.12.027.
 
6.
Ahmad, M., Qureshi, R., Arshad, M., Khan, M. A., & Zafar, M. (2009). Traditional herbal remedies used for the treatment of diabetes from district attock (Pakistan). Pakistan Journal of of Botany, 41(6), 2777-2782.
 
7.
Büyükbalcı, A., & Nehir, S. (2008). Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum Nutr, 63(1), 27-33. doi:10.1007/s11130-007-0065-5.
 
8.
Tuzlacı, E. (2006). Folk Medicinal Plants in Turkey, Alfa Press, Istanbul, Turkey, p 110.
 
9.
Baytop, T. (1999). Therapy with medicinal plants in Turkey (Past and Present), 2nd Edition, Nobel Tıp Press, İstanbul, Turkey, p97.
 
10.
Ayaz, F. A., Kadıoğlu, A., & Doğru, A. (1999). Soluble sugar composition of Elaeagnus angustifolia L. var. orientalis (L.) Kuntze fruits (Russian olive). Turk J Bot, 23, 349-354.
 
11.
Bekker, N. P., Gushenkova, A. I. (2001). Components of certain species of the Elaeagnaceae family. Chem Nat Comp, 37, 97-116. doi:10.1023/A:1012395332284.
 
12.
Bucur, L., Vlase, L., Istudor, V., & Popescu, A. (2009). HPLC-MS analysis of the polyphenols in two soft extracts of Elaeagnus angustifolia L. Note 2. Soft extract of young branches analysis. Farmacia, 57(6-6), 736-742.
 
13.
Saboonchian, F., Jamei, R., & Sarghein, S.H. (2014). Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna J Phytomed, 4(4), 231-238.
 
14.
Kunyanga, C. N., Imungi, J, K., Okoth, M. W., Biesalski, K., & Vadivel, V. (2012). Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT-Food Sci Technol, 45, 269-276. doi:10.1016/j.lwt.2011.08.006.
 
15.
Etxeberria, U., Laura de la Garza, A., Campion, J., & Martinez, J. A. (2012). Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Tar, 16(3), 269-297. doi:10.1517/14728222.2012.
 
16.
Ani, V., Naidu, K. (2008). Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. Eur Food Res Technol, 226(4), 897-903. doi:10.1007/s00217-007-0612-1.
 
17.
Chethan, S., Sreerama, Y. N., & Malleshi, N. G. (2008). Mode of inhibition of finger millet malt amylases by the millet phenolics. Food Chem, 111(1), 187-191. doi:10.1016/j.foodchem.2008.03.063.
 
18.
Davis, P. H. (1982). Flora of Turkey and East Aegean Islands, Volume 7, Edinburgh University Press, Edinburgh, p532.
 
19.
Jozefczyk, A., & Pawlowski, P. (2013). Determination of coumarins from aerial part of two Artemisia species. Curr Issues Pharm Med Sci, 26(1), 64-67. doi:10.12923/j.2084-980X/26.1/a.14.
 
20.
Erdemgil, F. Z., Şanli, S., Şanli, N., Ozkan, G., Barbosa, J., Guiteras, J., & Beltran, J. L. (2007). Determination of pKa values of some hydroxylated benzoic acids in methanol-water binary mixtures by LC methodology and potentiometry. Talanta, 72(2), 489-496. doi:10.1016/j.talanta.2006.11.007.
 
21.
Caponio, F., Alloggio, V., & Gomes, T. (1999). Phenolic compounds of virgin olive oil: Influence of paste preparation techniques. Food Chem, 64(2), 203-2009. doi:10.1016/S0308-8146(98)00146-0.
 
22.
Matsui, T., Tetsuya, U., Tomoyuki, O., Koichi S., Norihiko, T., & Kiyoshi, M. (2001). r-Glucosidase Inhibitory Action of Natural Acylated Anthocyanins. 2. r-Glucosidase Inhibition by Isolated Acylated Anthocyanins. J Agric Food Chem, 49, 1952−1956. doi:10.4103/0973-7847.79096.
 
23.
Önal, S., Timur, S., Okutucu, B., & Zihnioğlu, F. (2005). Inhibition of α-Glucosidase by aqueous extract of some potent antidiabetic medicinal herbs. Prep Biochem, 35(1), 29-36. doi:10.1081/PB-200041438.
 
24.
Kusova, R. D., Kazakov, A. L., & Luk’yanchikov, M. S. (1988). Phenolic compounds from fruit of E.angustifolia. Chem Nat Compd, 24(3), 392-393.
 
25.
Ayaz, F. A., & Bertoft, E. (2001). Sugar and phenolic acid composition of stored commercial oleaster fruits. J Food Com Anal, 14(5), 505-511. doi:10.1006/jfca.2001.1004.
 
26.
Li, S., Li, J., Guan, X. L., Li, J., Deng, S, P., Li, L. Q., Tang, M. T., Huang, J. G., Chen, Z. Z., & Yang, R. Y. (2011). Hypoglycemic effects and constituents of the barks of Cyclocarya paliurus and their inhibiting activities to glucosidase and glycogen phosphorylase. Fitoterapia, 82(7), 1081-1085. doi:10.1016/j.fitote.2011.07.002.
 
27.
Michel, T., Destandau, E., Le Floch, G., Lucchesi, M. E., & Elfakir, C. (2012). Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophae rhamnoides L.) leaf, stem, root and seed. Food Chem, 131(3), 754-760. doi:10.1016/j.foodchem.2011.09.029.
 
28.
Huang, S. M., Hsu, C. L., Chuang, H. C., Shih, P. H., Wu, C. H., Yen, G. C. (2008). Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic neuro-2A cells. Neurotoxicology, 29(6), 1016-1022. doi:10.1016/j.neuro.2008.07.002.
 
29.
Devarajen, S., & Venugopal, S. (2012). Antioxidant and α-amylase inhibition activities of phenolic compounds in the extracts of Indian honey. CJNM, 10(4), 255-259. doi:10.1016/S1875-5364(12)60051-X.
 
30.
Arif, T., Sharma, B., Gahlaut, A., Kumar, V., & Dabur, R. (2014). Anti-diabetic agents from medicinal plants: A review. Chemical Biology Letters, 1(1), 1-13.
 
eISSN:1306-3057