In vitro α-Glucosidase and α-Amylase Enzyme Inhibitory Effects in Elaeagnus angustifolia Leaves Extracts
1,
2,
3 1 | Anadolu University, TURKEY |
2 | Ege University, TURKEY |
3 | Mehmet Akif Ersoy University, TURKEY |
CORRESPONDING AUTHOR
Hale Secilmis Canbay
Department of Bioengineering, Faculty of Engineering and Architecture, Mehmet Akif Ersoy University, Burdur, 15030, Turkey
Department of Bioengineering, Faculty of Engineering and Architecture, Mehmet Akif Ersoy University, Burdur, 15030, Turkey
Online publication date: 2016-12-13
Publication date: 2016-12-13
Eurasian J Anal Chem 2017;12(2):117–126
KEYWORDS
TOPICS
ABSTRACT
This study was performed to demonstrate α-glucosidase and α-amylase enzyme inhibitor activities using the methanolic extracts of Elaeagnus angustifolia leaves. Methanolic extracts were prepared by two different extraction methods [accelerated solvent extractor (ASE) and Soxhlet apparatus]. The analytical procedure involved the application of liquid chromatography. Our results showed that the ASE extracts inhibited α-amylase (10-100 µg/ ml) and α-glucosidase (10-50 µg/ml) dose-dependently exhibitedrp inhibitory activities with the extracts [α-amylase (40%) and α-glucosidase (56%)]. RP-HPLC analyses of the methanolic extracts were detected with vanillic acid and 4-hydroxybenzoic acid as the main phenolic acids in all the ASE extracts. Elaeagnus angustifolia leaf extracts may be attributed to the presence of vanillic acid and 4-hydroxybenzoic acid, there by confirming with its traditional use for the management of diabetes mellitus. We implicate that the anti-diabetic activity through in vitro assessments and support to the folkloric use of this plant for controlling type-2 diabetes mellitus in Turkey.
REFERENCES (30)
1.
Sabitha, V., Panneerselvam, K., & Ramachandran, S. (2012). In vitro α-glucosidase and α-amylase enzyme inhibitory effects in aqueous extracts of Abelmoscus esculentus (L.) Moench. Asian Pac J Trop Biomed, 2, 162-164. doi:10.1016/S2221-1691(12)60150-6.
2.
WHO Expert Committee on Diabetes Mellitus. (1980). Second Report, Technical Report Series 646. WHO, Geneva, 41.
3.
Kim, J. S., Kwon, Y. S., Sa, Y. J., & Kim, M.J. (2011). Isolation and identification of sea bucktorn (Hippophae rhamnoides) phenolics with antioxidant activity and α-glucosidase inhibitory effect. J Agr Food Chem, 59, 138-144. doi:10.1021/jf103130a.
4.
Hsu, Y. J., Lee, T. H., Chang, C. L. T., Huang, Y. T., & Yang, W. C. (2009). Anti-hyperglycemic effects and mechanism of Bidens pilosa water extract. J Ethnopharmacol, 122, 379-383.
5.
Karthic, K., Kirthiram, K. S., Sadasivam, S., & Thayumanavan, B. (2008). Identification of α-amylase inhibitors from Syzygium cumini Linn seeds. Indian J Exp Biol, 46, 677-680. doi:10.1016/j.jep.2008.12.027.
6.
Ahmad, M., Qureshi, R., Arshad, M., Khan, M. A., & Zafar, M. (2009). Traditional herbal remedies used for the treatment of diabetes from district attock (Pakistan). Pakistan Journal of of Botany, 41(6), 2777-2782.
7.
Büyükbalcı, A., & Nehir, S. (2008). Determination of in vitro antidiabetic effects, antioxidant activities and phenol contents of some herbal teas. Plant Foods Hum Nutr, 63(1), 27-33. doi:10.1007/s11130-007-0065-5.
8.
Tuzlacı, E. (2006). Folk Medicinal Plants in Turkey, Alfa Press, Istanbul, Turkey, p 110.
9.
Baytop, T. (1999). Therapy with medicinal plants in Turkey (Past and Present), 2nd Edition, Nobel Tıp Press, İstanbul, Turkey, p97.
10.
Ayaz, F. A., Kadıoğlu, A., & Doğru, A. (1999). Soluble sugar composition of Elaeagnus angustifolia L. var. orientalis (L.) Kuntze fruits (Russian olive). Turk J Bot, 23, 349-354.
11.
Bekker, N. P., Gushenkova, A. I. (2001). Components of certain species of the Elaeagnaceae family. Chem Nat Comp, 37, 97-116. doi:10.1023/A:1012395332284.
12.
Bucur, L., Vlase, L., Istudor, V., & Popescu, A. (2009). HPLC-MS analysis of the polyphenols in two soft extracts of Elaeagnus angustifolia L. Note 2. Soft extract of young branches analysis. Farmacia, 57(6-6), 736-742.
13.
Saboonchian, F., Jamei, R., & Sarghein, S.H. (2014). Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna J Phytomed, 4(4), 231-238.
14.
Kunyanga, C. N., Imungi, J, K., Okoth, M. W., Biesalski, K., & Vadivel, V. (2012). Total phenolic content, antioxidant and antidiabetic properties of methanolic extract of raw and traditionally processed Kenyan indigenous food ingredients. LWT-Food Sci Technol, 45, 269-276. doi:10.1016/j.lwt.2011.08.006.
15.
Etxeberria, U., Laura de la Garza, A., Campion, J., & Martinez, J. A. (2012). Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase. Expert Opin Ther Tar, 16(3), 269-297. doi:10.1517/14728222.2012.
16.
Ani, V., Naidu, K. (2008). Antihyperglycemic activity of polyphenolic components of black/bitter cumin Centratherum anthelminticum (L.) Kuntze seeds. Eur Food Res Technol, 226(4), 897-903. doi:10.1007/s00217-007-0612-1.
17.
Chethan, S., Sreerama, Y. N., & Malleshi, N. G. (2008). Mode of inhibition of finger millet malt amylases by the millet phenolics. Food Chem, 111(1), 187-191. doi:10.1016/j.foodchem.2008.03.063.
18.
Davis, P. H. (1982). Flora of Turkey and East Aegean Islands, Volume 7, Edinburgh University Press, Edinburgh, p532.
19.
Jozefczyk, A., & Pawlowski, P. (2013). Determination of coumarins from aerial part of two Artemisia species. Curr Issues Pharm Med Sci, 26(1), 64-67. doi:10.12923/j.2084-980X/26.1/a.14.
20.
Erdemgil, F. Z., Şanli, S., Şanli, N., Ozkan, G., Barbosa, J., Guiteras, J., & Beltran, J. L. (2007). Determination of pKa values of some hydroxylated benzoic acids in methanol-water binary mixtures by LC methodology and potentiometry. Talanta, 72(2), 489-496. doi:10.1016/j.talanta.2006.11.007.
21.
Caponio, F., Alloggio, V., & Gomes, T. (1999). Phenolic compounds of virgin olive oil: Influence of paste preparation techniques. Food Chem, 64(2), 203-2009. doi:10.1016/S0308-8146(98)00146-0.
22.
Matsui, T., Tetsuya, U., Tomoyuki, O., Koichi S., Norihiko, T., & Kiyoshi, M. (2001). r-Glucosidase Inhibitory Action of Natural Acylated Anthocyanins. 2. r-Glucosidase Inhibition by Isolated Acylated Anthocyanins. J Agric Food Chem, 49, 1952−1956. doi:10.4103/0973-7847.79096.
23.
Önal, S., Timur, S., Okutucu, B., & Zihnioğlu, F. (2005). Inhibition of α-Glucosidase by aqueous extract of some potent antidiabetic medicinal herbs. Prep Biochem, 35(1), 29-36. doi:10.1081/PB-200041438.
24.
Kusova, R. D., Kazakov, A. L., & Luk’yanchikov, M. S. (1988). Phenolic compounds from fruit of E.angustifolia. Chem Nat Compd, 24(3), 392-393.
25.
Ayaz, F. A., & Bertoft, E. (2001). Sugar and phenolic acid composition of stored commercial oleaster fruits. J Food Com Anal, 14(5), 505-511. doi:10.1006/jfca.2001.1004.
26.
Li, S., Li, J., Guan, X. L., Li, J., Deng, S, P., Li, L. Q., Tang, M. T., Huang, J. G., Chen, Z. Z., & Yang, R. Y. (2011). Hypoglycemic effects and constituents of the barks of Cyclocarya paliurus and their inhibiting activities to glucosidase and glycogen phosphorylase. Fitoterapia, 82(7), 1081-1085. doi:10.1016/j.fitote.2011.07.002.
27.
Michel, T., Destandau, E., Le Floch, G., Lucchesi, M. E., & Elfakir, C. (2012). Antimicrobial, antioxidant and phytochemical investigations of sea buckthorn (Hippophae rhamnoides L.) leaf, stem, root and seed. Food Chem, 131(3), 754-760. doi:10.1016/j.foodchem.2011.09.029.
28.
Huang, S. M., Hsu, C. L., Chuang, H. C., Shih, P. H., Wu, C. H., Yen, G. C. (2008). Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic neuro-2A cells. Neurotoxicology, 29(6), 1016-1022. doi:10.1016/j.neuro.2008.07.002.
29.
Devarajen, S., & Venugopal, S. (2012). Antioxidant and α-amylase inhibition activities of phenolic compounds in the extracts of Indian honey. CJNM, 10(4), 255-259. doi:10.1016/S1875-5364(12)60051-X.
30.
Arif, T., Sharma, B., Gahlaut, A., Kumar, V., & Dabur, R. (2014). Anti-diabetic agents from medicinal plants: A review. Chemical Biology Letters, 1(1), 1-13.
RELATED ARTICLE