Modified Carbon Paste Electrode Based on Multi-Walled Carbon Nanotubes (MWCNTs) and Ionic Liquid for Potentiometric Determination of Cu2+ Ions in Real Samples
More details
Hide details
Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, IRAN
Mahmoud Ebrahimi   

Department of Chemistry, Mashhad Branch, Islamic Azad University, Mashhad, Iran
Online publication date: 2016-12-12
Publication date: 2016-12-12
Eurasian J Anal Chem 2017;12(2):107–115
Carbon paste electrode based on multi-wall carbon nanotube (MWCNT) and ionic liquid was prepared and used for the potentiometric determination of copper ion. A multi-walled carbon nanotubes (MWCNTs) was used in the composition of the carbon paste to enhance conductivity and transduction of chemical signal to electrical signal. Furthermore, unification of 1,4-diamino anthraquinone as an ionophore to this composition caused to significantly improve d selectivity toward Cu (II) ions. The electrode show a nernstian slope of 29.5± 0.2 mV per decade for Cu2+‏ ion over a wide concentration range from 1.0×10-1 to 1.0×10-6 M.The lower detection limits is 8.0×10-7 M. The electrode has a fast response time (<5 s), a satisfactory relatively long life time and reproducibility. The proposed sensor revealed a fairly good selectivity toward Cu2+‏ ion in comparison to other common cations and the working pH range was 3.0-12. In a final manner, these electrode have been successfully implemented for the determination of Cu2+ ions content in real samples.
Greenwood, N., & Earnshawm, A. (1984). Chemistry of the Elements, Pergamon Press, Oxford, 235-236.
Marston, H. R. (1952). Cobalt, Copper and Molybdenum in the Nutrition of Animals and Plants, 32, 1.
Akhond, M., Najafi, M. B., Sharghi, H., Tashkhourian, J., & Naiemi, H. (2007). Novel Copper(II)-Selective Membrane Electrode Based on a New Synthesized Schiff Base. Journal of the Chinese Chemical Society, 54(2), 331-337. doi:10.1002/jccs.200700048.
Buck, R. P., & Lindner, E. (1994). Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure and Applied Chemistry, 66(12), 2527-2536.
Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., & Amemiya, S. (2000). Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure and Applied Chemistry, 72(10), 1851-2082.
Gholivand, M. B., & Nozari, N. (2001). Copper(II)-selective electrode using 2,2′-dithiodianiline as neutral carrier. Talanta, 54(4), 597-602.
Gupta, V. K., Prasad, R., & Kumar, A. Preparation of ethambutol-copper(II) complex and fabrication of PVC based membrane potentiometric sensor for copper. Talanta, 60(1), 149-160.
Singh, L. P., & Bhatnagar, J. M. Copper(II) selective electrochemical sensor based on Schiff Base complexes. Talanta, 64(1), 313–319.
Fakhari, A. R., Raji, T. A., & Naeimi, H. Copper-selective PVC membrane electrodes based on salens as carriers. Sensors and Actuators B, 104(1), 317–323.
Gismera, M. J., Mendiola, M. A., Procopio, J. R., & Sevilla, M. T. Copper potentiometric sensors based on copper complexes containing thiohydrazone and thiosemicarbazone ligands. Analytica Chimica Acta, 385(1), 143-149.
Jain, A. K., Gupta, V. K., Singh, L. P., & Raisoni, J. R. Chelating ionophore based membrane sensors for copper(II) ions. Talanta, 66(1), 1355–1361.
Gupta, V. K., Ali, I., & Saini, V.K. Defluoridation of wastewaters using waste carbon slurry. Water Research, 41(1), 3307–3316.
Hassan, S. S. M., Elnemma, E. M., & Mohamed, A. H. K. Novel potentiometric copper (II) selective membrane sensors based on cyclic tetrapeptide derivatives as neutral ionophores. Talanta, 66(1), 1034–1041.
Gupta, V. K., Jain, A. K., Maheshwari, G., Lang, H., & Ishtaiwi, Z. Copper(II)-selective potentiometric sensors based on porphyrins in PVC matrix. Sensors and Actuators B, 117(1), 99–106.
Gholivand, M. B., Rahimi-Nasrabadi, M., Ganjali, M. R., & Salavati-Niasari, M. Highly selective and sensitive copper membrane electrode based on a new synthesized Schiff base. Talanta, 73(1), 553–560.
Ghaedi, M., Shahamiri, A., Hajati, S., & Mirtamizdoust, B. A novel PVC-membrane optical sensor for high sensitive and selective determination of Cu2+ ion based on synthesized (E)-N′-(pyridin-2-ylmethylene) isonicotin-ohydraz. Journal of Molecular Liquids, 199(1), 483–488.
Karimi-Maleh, H., Biparva, P., & Hatami, M. A novel modified carbon paste electrode based on NiO/CNTs nanocomposite and (9, 10-dihydro-9, 10-ethanoanthracene-11, 12-dicarboximido)-4-ethylbenzene-1, 2-diol as a mediator for simultaneous determination of cysteamine, nicotinamide adenine dinucleotide and folic acid. Biosensors and Bioelectronics, 48(1), 270-275.
Karimi-Maleh, H., Tahernejad-Javazmi, F., Ensafi, A., Moradi, R., Shadpour, M., & Beitollahi, H. A high sensitive biosensor based on FePt/CNTs nanocomposite /N-(4-hydroxyphenyl)-3,5-dinitrobenzamide modified carbon paste electrode for simultaneous determination of glutathione and piroxicam. Biosensors and Bioelectronics, 60(1), 1-7.
Ensafi, A. A., & Karimi-Maleh, H. Modified multiwall carbon nanotubes paste electrode as a sensor for simultaneous determination of 6-thioguanine and folic acid using ferrocenedicarboxylic acid as a mediator. Journal of Electroanalytical Chemistry, 640(1), 75-83.
Shahmiri, M. R., Bahari, A., Karimi-Maleh, H., Hosseinzadeh, R., & Mirnia, N. Ethynylferrocene–NiO/MWCNT nanocomposite modified carbon paste electrode as a novel voltammetric sensor for simultaneous determination of glutathione and acetaminophen. Sensors and Actuators B, 177(1), 70-77.
Moradi, R., Sebt, S. A., Karimi-Maleh, H., Sadeghi, R., Karimi, F., & Bahari, A. Synthesis and application of FePt/CNTs nanocomposite as a sensor and novel amide ligand as a mediator for simultaneous determination of glutathione, nicotinamide adenine dinucleotide and tryptophan. Physical Chemistry Chemical Physics, 15(1), 5888-5897.
Ensafi, A. A., Karimi-Maleh, H., Mallakpour, S., & Hatami, M. Simultaneous determination of N-acetylcysteine and acetaminophen by voltammetric method using N-(3, 4-dihydroxyphenethyl)-3, 5-dinitrobenzamide modified multiwall carbon nanotubes paste electrode. Sensors and Actuators B, Chemical, 155(1), 464-472.
Beitollah, H., Goodarzian, M., Khalilzadeh, M. A., & Karimi-Maleh, H. Electrochemical behaviors and determination of carbidopa on carbon nanotubes ionic liquid paste electrode. Journal of Molecular Liquids, 173(1), 137-143.
Afsharmanesh, E., Karimi-Maleh, H., Pahlavan, A., & Vahedi, J. Electrochemical behavior of morphine at ZnO/CNT nanocomposite room temperature ionic liquid modified carbon paste electrode and its determination in real samples. Journal of Molecular Liquids, 181(1), 8-13.
Tavana, T., Khalilzadeh, M. A., Karimi-Maleh, H., Ensafi, A. A., Beitollahi, H., & Zareyee, D. Sensitive voltammetric determination of epinephrine in the presence of acetaminophen at a novel ionic liquid modified carbon nanotubes paste electrode. Journal of Molecular Liquids, 168(1), 69–74.
Yaghoubian, H., Karimi-Maleh, H., Khalilzadeh, M. A., & Karimi, F. Electrocatalytic Oxidation of Levodopa at a Ferrocene Modified Carbon Nanotube Paste Electrode. Int. J. Electrochem. Sci, 4(1), 993-1003.
Gupta, V. K., Goyal, R. N., & Sharma, R. A. Comparative studies of neodymium (III)-selective PVC membrane sensors. Analytica Chimica Acta, 647(1), 66-71.
Hartono, T., Wang, S., Ma, Q., & Zhu, Z. Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. Journal of Colloid and Interface Science, 333(1), 114-119.
Ganjali, M. R., Khoshsafar, H., Faridbod, F., Shirzadmehr, A., Javanbakht, M., & Norouzi, P. (2009). Room Temperature Ionic Liquids (RTILs) and Multiwalled Carbon Nanotubes (MWCNTs) as Modifiers for Improvement of Carbon Paste Ion Selective Electrode Response; A Comparison Study with PVC Membrane. Electroanalysis, 21(19), 2175-2178.
Ganjali, M. R., Khoshsafar, H., Shirzadmehr, A., Javanbakht, M., & Faridbod, F. (2009). Improvement of carbon paste ion selective electrode response by using room temperature ionic liquids (RTILs) and multi-walled carbon nanotubes (MWCNTs). Int J Electrochem Sci, 4(3), 435-443.