Molecular Products and Particulate Characterization of Emissions from High Temperature Cooking of Goat Meat
More details
Hide details
Egerton University, KENYA
University of Eldoret, KENYA
Joshua Kibet   

Department of Chemistry, Egerton University, P.O Box 536-1125, Egerton, Kenya
Online publication date: 2016-12-08
Publication date: 2016-12-08
Eurasian J Anal Chem 2017;12(2):45–59
Efforts to understand the formation characteristics of molecular toxins and particulate matter from various combustion systems, has gained intense attention in the recent past. Accordingly, this work investigates the evolution of organic toxins and particulate matter from a goat meat sample at various pyrolysis temperatures. To simulate cooking conditions, 10 mg of meat sample was heated under atmospheric conditions in an air depleted environment in a thermal degradation reactor and the smoke effluent passed through a transfer column and collected over 10.0 mL dichloromethane for GC-MS analysis. The major selected toxins reported in this study include indole, 2-(1-methyl) quinoline, phenol, 2-ethylthiophenol, 2,3-dimethylhydroquinone, and 1,1’-biphenyl. At the highest pyrolysis temperature (700 ˚C), the mean particle size of particulate emissions was estimated to be 7.72 ± 0.61 µm while at 500 ˚C, the particle size of emissions was found to be 3.52 ± 0.31 µm. The decomposition profile of meat was monitored between 300 and 525 ˚C, and the highest mass loss was recorded between 300 and 450 ˚C (~ 36%). Most of the organic toxins from high temperature cooking of goat meat were mainly phenolics whereas the particulate emissions at 500 ˚C and 700 ˚Cwere approximately PM2.5 and PM10 respectively.
Selassie, D., Cynthia J., Shusterman, A., Kapur, S., Verma, P. R., Zhang, L., & Hansch, C. (1999). On the toxicity of phenols to fast growing cells. A QSAR model for a radical-based toxicity, Journal of the Chemical Society, Perkin Transactions 2(12), 2729-2733.
Lin, H. Q., Ye, Q., Deng, C. H., & Zhang, X. M. (2008). Field analysis of acetaldehyde in mainstream tobacco smoke using solid-phase microextraction and a portable gas chromatograph. Journal of Chromatography A, 1198, 34-37.
Jagerstad, M., Skog, K., Arvidsson, P., & Solyakov, A. (1998). Chemistry formation and occurrence of genotoxic heterocyclic amines identified in model systems and cooked foods. Und-Forschung a-Food, Research and Technology, 207(6), 419-427.
Mehmet, A., & Hasan, C. A. (2009). Meteorological variations of PM2.5/PM10 concentrations and particle-associated polycyclic aromatic hydrocarbons in the atmospheric environment of Zonguldak, Turkey. Journal of Hazardous Materials, 170, 13–21.
WHO. (2005). Particulate Matter Air Pollution: How it Harms Health. World Health Organization Europe, 1-4.
Dellinger, B., Lomnicki, S., Khachatryan, L, Maskos, Z, Hall, W. R., Adounkpe, J., McFerrin, C., Truong, H. (2007). Formation and stabilization of persistent free radicals. Proceedings of the Combustion Institute, 31, 521-528.
Jaromir, M., Ożadowicz, R., & Duda, W. (2005). Analysis of chlorophenols, chlorocatechols, chlorinated methoxyphenols and monoterpenes in communal sewage of Łódź and in the Ner river in 1999-2000. Bioresource Technology, 16, 205.
Monge, M. E., D'Anna, B., Mazri, L., Giroir-Fendler, A., Ammann, M., Donaldson, D. J., & George, C. (2010). Light changes the atmospheric reactivity of soot, Proceedings of the National Academy of Sciences, 107(15), 6605-6609.
Cohen, A. J. (2000). Outdoor air pollution and lung cancer. Environmental health perspectives, 108, (Suppl 4), 743.
Doll, R., & Peto, R. (1981). The causes of cancer - quantitative estimates of avoidable risks of cancer in the united-states today. Journal of the National Cancer Institute, 66(6), 1191-&.
Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G. L., Hegde, V., & Deutsch, W. A. (2001). Role of free radicals in the toxicity of airborne fine particulate matter, Chemical Research in Toxicology, 14(10), 1371-1377.
Sugimura, T., Wakabayashi, K., Nakagama, H., & Nagao, M. (2004). Heterocyclic amines: Mutagens/carcinogens produced during cooking of meat and fish, Cancer Science, 95(4), 290–299.
Babiker, S. A., El Khider, I. A., & Shafie, S. A. (1990). Chemical composition and quality attributes of goat meat and lamb. Meat science, 28(4), 273-277.
Kibet, J., Khachatryan, L., & Dellinger, B. (2012). Molecular Products and Radicals from Pyrolysis of Lignin, Environmental Science & Technology, 46(23), 12994-13001.
Kibet, J., Khachatryan, L., & Dellinger, B. (2015). Phenols from pyrolysis and co-pyrolysis of tobacco biomass components. Chemosphere, 138, 259-265.
Caceres, L. A. (2015). A study of volatile organic compounds fromtransgenic arabidopsis thaliana and solanum lycopersicum plants and analytical characterization of pyrolysis bio-oil. Thesis, the University of Western Ontario.
Kibet, J., Khachatryan, L., & Dellinger, B. (2013). Molecular products from the thermal degradation of glutamic acid. Journal of Agricultural and Food Chemistry, 4(6), 178-184.
Konert, M., & Vandenberghe, J. (1997). Comparison of laser grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology, 44(3), 523-535.
Poynton, S. D., Slade, R. C. T., Omasta, T. J., Mustain, W. E., Escudero-Cid, R., Oc´onb, P., & Varcoe, R. J. (2014). Preparation of radiation-grafted powders for use as anion exchange ionomers in alkaline polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2, 5124-5130.
Pongjanta, J., Utaipatanacheep, A., Naivikul, O., & Piyachomkwan, K. (2008). Enzymes-resistant Starch (RS III) from Pullulanase-Debranched High Amylose Rice Starch. Kasetsart J (Nat. Sci.), 42, 198-205.
Nigam, S., Nigam, R., Kulshrestha, M., & Mittal, S. K. (2014). Carbon monoxide modeling studies: a review. Environ. Rev., 18, 137-158.
Uddin, K. M., Warburton, P. L., & Poirier, R. A. (2012). Comparisons of Computational and Experimental Thermochemical Properties of alpha-Amino Acids. Journal of Physical Chemistry B, 116(10), 3220-3234.
Kim, S., Chmely, S. C., Nimos, M. R., Bomble, Y. J., Foust, T. D., Paton, R. S., & Beckham, G. T. (2011). Computational Study of Bond Dissociation Enthalpies for a Large Range of Native and Modified Lignins. Journal of Physical Chemistry Letters, 2(22), 2846-2852.
Boese, A. D. (2015). Density Functional Theory and Hydrogen Bonds: Are We There Yet? ChemPhysChem, 16, 978-985.
Sharma, R. K. & Hajaligol, M. R. (2003). Effect of pyrolysis conditions on the formation of polycyclic aromatic hydrocarbons (PAHs) from polyphenolic compounds. Journal of Analytical and Applied Pyrolysis, 66(1-2), 123-144.
Kibet, J., Khachatryan, L., & Dellinger, B. (2013). Molecular products from the pyrolysis and oxidative pyrolysis of tyrosine. Chemosphere, 91(7), 1026-1034.
Shi, J. Q., Cheng, J., Wanga, F. Y., Flamm, A., Wang, Z. Y., Yang, X., & Gao, S. X. (2012). Acute toxicity and n-octanol/water partition coefficients of substituted thiophenols: Determination and QSAR analysis. Ecotoxicol. & Environ. Saf, 78, 134-141.
Dar, T., Altarawneh, M., & Dlugogorski, B. Z. (2012). Theoretical study in the dimerisation of 2-chlorothiophenol/2-chlorothiopheoxy: precursors to PCDT/TA. Organohalogen Compd, 74, 657-660.
Michalowicz, J., & Duda, W. (2007). Phenols - Sources and toxicity. Polish Journal of Environmental Studies, 16, 347-362.
Khachatryan, L., Adounkpe, J., & Dellinger B. (2008). Radicals from the Gas-Phase Pyrolysis of Hydroquinone: 2. Identification of Alkyl Peroxy Radicals, Energy & Fuels, 22(6), 3810-3813.
Sharma, R. K., Wooten, J. B., Baliga, V. L., Lin, X. H., Chan, W. G., & Hajaligol, M. R. (2004). Characterization of chars from pyrolysis of lignin, Fuel, 83(11-12), 1469-1482.
Tirado-Rives, J. & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of Chemical Theory and Computation, 4(2), 297-306.
Khachatryan, L., Adounkpe, J., Asatryan, R., & Dellinger, B. (2010). Radicals from the Gas-Phase Pyrolysis of Catechol: 1. o-Semiquinone and ipso-Catechol Radicals. J. Phys. Chem., A, 114(6), 2306-2312.
Dellinger, B., Lomnicki, S., Khachatryan, L., Maskos, Z., Hall, W. R., Adounkpe, J., McFerrin, C., & Truong, H. (2007). Formation and stabilization of persistent free radicals. Proceedings of the Combustion Institute, 31, 521-528.
Maga, J. A. (1981). Pyrroles in foods. Journal of Agricultural and Food Chemistry, 29(4), 691-694.
Majima, H. J., & Toyokuni, S. (2012). Mitochondria and free radical studies on health, disease and pollution. Informa healthcare, 925–926.
Hu, J., Ma, H., Zhang, W., Yu, Z., Sheng, G., & Fu, J. (2014). Effects of Benzene and Its Metabolites on Global DNA Methylation in Human Normal Hepatic L02 Cells. Environ Toxicol., 29, 108-116.
Snyder, R. G., & Goldstein, B. D. (1993). The toxicology of benzene. Environmental Health Perspectives, 100, 293-306.
Snyder, R. G. et al. (1989). Studies on the mechanism of benzene toxicity. Environmental Health Perspectives, 82, 31-35.
Ledesma, E. B., Marsh, N. D., Sandrowitz, A. K., & Wornat, M. J. (2002). An experimental study on the thermal decomposition of catechol. Proceedings of the Combustion Institute, 29, 2299-2306.
Perez, G. C., & Lilla, E. (1991). Pyrolysis of benzene-naphthalene mixtures. Chemosphere, 22(3–4), 279-284.
Kamens, R., Lee, C. T., Wiener, R., & Leith, D. (1991). A study of characterize indoor particles in three non-smoking homes. Atmospheric Environment Part A, General Topics, 25(5-6), 939-948.
Buonanno, G., Morawska, L., & Stabile, L. (2009). Particle emission factors during cooking activities. Atmospheric Environment, 20(43), 3235-3242.
Squadrito, G. L., Cueto, R., Dellinger, B., & Pryor, W. A. (2001). Squadrito, Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radical Biology and Medicine, 31(9), 1132-1138.
Dellinger, B., Pryor, W. A., Cueto, R., Squadrito, G., & Deutsch, W. A. (2000). The role of combustion-generated radicals in the toxicity of PM2.5. Proceedings of the Combustion Institute, 28, 2675-2681.