Optimization of RPLC Method for Separation of Some Acetylcholinesterase Inhibitors by using Central Composite Design
 
More details
Hide details
1
Süleyman Demirel University, TURKEY
CORRESPONDING AUTHOR
Ebru Çubuk Demiralay   

Süleyman Demirel University, Department of Chemistry, Faculty of Science and Literature, 32260 Isparta, Turkey
Online publish date: 2016-12-04
Publish date: 2016-12-04
 
Eurasian J Anal Chem 2016;(Special issue on UAKK8 Sp 1):23–43
KEYWORDS
TOPICS
ABSTRACT
This study is described for reversed phase liquid chromatographic separation of acetylcholinesterase inhibitors (donepezil, galantamine and rivastigmine). In the first stage of method development, acetonitrile concentration, pH of mobile phase and column temperature were investigated using central composite design (CCD). Afterwards, the optimal conditions were found employing central composite design and Derringer's desirability function. Effect of these variables on the output responses such as retention factors, resolutions (Rs) and retention time (tR) were evaluated. The separation was applied by using X Terra C18 column (250 × 4.6 mm ID, 5 µm). The optimum assay conditions were: acetonitrile-water binary mixture (45:55, v/v) and pH 9.5 as the mobile phase and at column temperature 33°C. Total chromatographic analysis time per sample was approximately 12.5 min. The method showed good agreement between the experimental data and predictive value throughout the studied parameter space. By using equations obtained CCD, protonation constant values (pKa) of donepezil, galantamine and rivastigmine were also predicted.
 
REFERENCES (40)
1.
Bajda, M., Jończyk, J., Malawska, B., Czarnecka, K., Girek, M., Olszewska, P., Sikora, J., Mikiciuk-Olasik, E., Skibinski, R., Gumieniczek, A., & Szymański, P. (2015). Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 23, 5610-5618.
 
2.
Jann, M. W., Shirley, K. L., & Small, G. W. (2002). Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clinical Pharmacokinetics, 41(10), 719-739.
 
3.
Dgachi, Y., Ismaili, L., Knez, D., Benchekroun, M., Martin, H., Szałaj, N., Wehle, S., Bautista-Aguilera, O. M., Luzet, V., Bonnet, A., Malawska, B., Gobec, S., Chioua, M., Decker, M., Chabchoub, F., & Marco-Contelles, J. (2016). Synthesis and biological assessment of racemic benzochromenopyrimidinimines as antioxidant, cholinesterase, and Aβ1− 42 aggregation inhibitors for Alzheimer's disease therapy. ChemMedChem, doi:10.1002/cmdc.201500539.
 
4.
Pous-Torres, S., Torres-Lapasió, J. R., Baeza-Baeza, J. J., & García-Álvarez-Coque, M. C. (2007). Combined effect of solvent content, temperature and pH on the chromatographic behaviour of ionisable compounds. Journal of Chromatography A, 1163(1-2), 49-62.
 
5.
Pous-Torres, S., Torres-Lapasió, J. R., Baeza-Baeza, J. J., & García-Álvarez-Coque, M. C. (2008). Combined effect of solvent content, temperature and pH on the chromatographic behaviour of ionisable compounds. II. Benefits of the simultaneous optimization. Journal of Chromatography A, 1193(1-2), 117-128.
 
6.
Popovic, I., Ivanovic, D., Medenica, M., Malenovic, A., & Jancic-Stojanovic, B. (2008). LC determination of lercanidipine and ıts ımpurities using drylab software and experimental design procedures. Chromatographia, 67, 449-454.
 
7.
Hadjmohammadi, M., & Sharifi, V. (2012). Simultaneous optimization of the resolution and analysis time of flavonoids in reverse phase liquid chromatography using Derringer’s desirability function. Journal of Chromatography B, 880, 34-41.
 
8.
Kumar, L., Reddy, M. S., Managuli, R. S., & Pai, K. G. (2015). Full factorial design for optimization, development and validation of HPLC method to determine valsartan in nanoparticles. Saudi Pharmaceutical Journal, 23, 549-555.
 
9.
Demiralay, E. C. (2012). Experimental design approach to optimization of the liquid chromatographic separation conditions for the determination of metformin and glibenclamide in pharmaceutical formulation. Acta Chimica Slovenica 59, 307–314.
 
10.
Zečević, M., Živanović, L. J., Agatonovic-Kustrin, S., & Minic, D. (2001). The use of a response surface methodology on HPLC analysis of methyldopa, amiloride and hydrochlorothiazide in tablets. Journal of Pharmaceutical and Biomedical Analysis, 24(5-6), 1019-1025.
 
11.
Baranda, A. B., Berasaluce, O., Jiménez, R. M., & Alonso, R. M. (2005). LC-DAD determination of calcium channel blockers by using an experimental design approach. Chromatographia, 61(9-10), 447-453.
 
12.
Baranda, A. B., Etxebarria, N., Jiménez, R. M., & Alonso, R. M. (2005). Improvement of the chromatographic separation of several 1,4-dihydropyridines calcium channel antagonist drugs by experimental design. Journal of Chromatographic Science, 43(10), 505-512.
 
13.
Barmpalexis, P., Kanaze, F. I., & Georgarakis, E. (2009). Developing and optimizing a validated isocratic reversed-phase high-performance liquid chromatography separation of nimodipine and impurities in tablets using experimental design methodology. Journal of Pharmaceutical and Biomedical Analysis, 49, 1192-1202.
 
14.
Ferreira, S. L. C., Bruns, R. E., Ferreira, H. S., Matos, G. D., David, J. M., Brandão, G. C., Silva, E. G. P., Portugal, L. A., Reis, P. S., Souza, A. S., & Santos, W. N. L. (2007). Box-Behnken design, An alternative for the optimization of analytical methods. Analytica Chimica Acta, 597, 179-186.
 
15.
Ferreira, S. L. C., Bruns, R. E., Silva, E. G. P., Santos, W. N. L., Quintella, C. M., David, J. M., Andrade, J. B., Breitkreitz, M. C., Jardim, I. C. S. F., & Neto, B. B. (2007). Statistical designs and response surface techniques for the optimization of chromatographic systems. Journal of Chromatohraphy A, 1158, 2-14.
 
16.
Wolcott, R. G., Dolan, J., & Snyder, L. R. (2000). Computer simulation for the convenient optimization of isocratic reversed-phase liquid chromatographic separations by varying temperature and mobile phase strength. Journal of Chromatography A, 869, 3–25.
 
17.
Janèiæ, M. M., Darko, I., & Malenoviæ, A. (2007). Experimental design in chromatographic analysis of pramipexole and its impurities. Acta Chimica Slovenica, 54, 49-54.
 
18.
Khodadoust, S., & Hadjmohammadi, M. (2011). Determination of N-methylcarbamate insecticides in water samples using dispersive liquid-liquid microextraction and HPLC with the aid of experimental design and desirability function. Analytica Chimica Acta, 699, 113– 119.
 
19.
Xu, H., Paxton, J., Lim, J., Li, Y., & Wua, Z. (2014). Development of a gradient high performance liquid chromatographyassay for simultaneous analysis of hydrophilic gemcitabine and lipophilic curcumin using a central composite design and its application in liposome development. Journal of Pharmaceutical and Biomedical Analysis, 98, 371–378.
 
20.
Nagamallika, G., & Arunadevi, M. (2013). Rapid RP-HPLC Method for the Determination of Galantamine Hydrobromide in Pharmaceutical Formulations. Indo American Journal of Pharmaceutical Research, 3, 6285-6290.
 
21.
Patel, A. V., Patel, V. J., Patel, A. V., Dave, J. B., & Patel, C. N. (2013). Determination of galantamine hydrobromide in bulk drug and pharmaceutical dosage form by spectrofluorimetry. Journal of Pharmacy & Bioallied Sciences, 5, 314.
 
22.
Thomas, S., Shandilya, S., Bharati, A., Paul, S. K., Agarwal, A., & Mathela, C. S. (2012). Identification, Characterization & Quantification of New Impurities by LC–ESI/MS/MS and LC–UV Methods in Rivastigmine Tartrate Active Pharmaceutical Ingredient. Journal of Pharmaceutical and Biomedical Analysis, 57, 39-51.
 
23.
Liew, K. B., Peh, K. K., Tze, Y., & Tan, F. (2013). RP-HPLC analytical method development and optimization for quantification of donepezil hydrochloride in orally disintegrating tablet. Pak J Pharm Sci, 26, 961-6.
 
24.
Bharathi, D. P., Sumanjali, P., Shahanaz, S., Sharif, M. A., Suneetha, G. L., Saisree, M., & Unnisa, A. (2015). Development and validation of RP-HPLC-PDA method for the estimation of donepezil in bulk and tablet dosage form and in vitro dissolution samples. Pharmaceutical Research, 5, 09.
 
25.
Trivedi, V., Upadhyay, V., Yadav, M., Shrivastav, P. S., & Sanyal, M. (2014). Impact of electrospray ion source platforms on matrix effect due to plasma phospholipids in the determination of rivastigmine by LC-MS/MS. Bioanalysis, 6, 2301-2316.
 
26.
Wattmo, C., Jedenius, E., Blennow, K., & Wallin, Å. K. (2013). Dose and plasma concentration of galantamine in Alzheimer's disease-clinical application. Alzheimer's research & therapy, 5, 1.
 
27.
Noetzli, M., Ansermot, N., Dobrinas, M., & Eap, C. B. (2012). Simultaneous determination of antidementia drugs in human plasma, Procedure transfer from HPLC–MS to UPLC–MS/MS. Journal of Pharmaceutical and Biomedical Analysis, 64, 16-25.
 
28.
Suresh, P. S., Mullangi, R., & Sukumaran, S. K. (2014). Highly sensitive LC‐MS/MS method for determination of galantamine in rat plasma, application to pharmacokinetic studies in rats. Biomedical Chromatography, 28(12), 1633-1640.
 
29.
Bhateria, M., Ramakrishna, R., Pakala, D. B., & Bhatta, R. S. (2015). Development of an LC–MS/MS method for simultaneous determination of memantine and donepezil in rat plasma and its application to pharmacokinetic study. Journal of Chromatography B, 1001, 131-139.
 
30.
Rondinini, S., Mussini, P. R., & Mussini, T. (1987). Reference value standards and primary standards for pH measurements in organic solvents and water + organic solvent mixtures of moderate to high permittivities. Pure Applied Chemistry, 59, 1549.
 
31.
Minitab (Version 16) [Software], 2015. Available from http,//www.minitab.com/en-US/products....
 
32.
NLREG Version 4.0. P.H. Sherrod, http,//www.sandh.com/Sherrod1991.
 
33.
Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables, Journal Quality technology, 12(4), 214-218.
 
34.
ICH Validation of Analytical Procedures, Text and methodology Q2 (R1), International Conference on Harmonization, 2005.
 
35.
Yasuda, M. (1959). Dissociation constants of some carboxylic acids in mixed aqueous solvents. Bulletin of the Chemical Society of Japan, 32, 429–432.
 
36.
Daldal, Y. D., Demiralay, E. C., & Özkan, S. A. (2015). Effect of organic solvent composition on dissociation constants of some reversible acetylcholinesterase inhibitors. Journal of Brazillian Chemical Society, 2015, 1-7.
 
37.
Meloun, M., Bordovská, S., & Galla, L. (2010). The thermodynamic dissociation constants of clotrimazole, terbinafine hcl, acetylsalicylic acid, salicylic acid, and galanthamine by the nonlinear regression of multiwavelength spectrophotometric ph-titration data. SRX Pharmacology, 2010, 1-14.
 
38.
Hsieh, Y. H., Yang, Y. H., Yeh, H. H., Lin, P. C., & Chen, S. H. (2009). Simultaneous determination of galantamine, rivastigmine and NAP 226‐90 in plasma by MEKC and its application in Alzheimer's disease. Electrophoresis 30(4), 644-653.
 
39.
Luan, F., Ma, W., Zhang, H., Zhang, X., Liu, M., Hu, Z., & Fan, B. (2005). Prediction of pKa for neutral and basic drugs based on radial basis function Neural networks and the heuristic method. Pharmaceutical research 22(9), 1454-1460.
 
40.
Ishihama, Y., Nakamura, M., Miwa, T., Kajima, T., & Asakawa, N. (2002). A rapid method for pKa determination of drugs using pressure‐assisted capillary electrophoresis with photodiode array detection in drug discovery. Journal of pharmaceutical sciences, 91(4), 933-942.
 
eISSN:1306-3057