Parts-per-billion Limits of Detection via Absorbance Spectroscopy: An Ultraviolet (254 nm) Absorbance Detector for Liquid Chromatography using a Light Emitting Diode (LED)
More details
Hide details
Texas Tech University, UNITED STATES
Jonathan E. Thompson   

Texas Tech University, MS1061, Department of Chemistry & Biochemistry, 79409 Lubbock, United States
Online publication date: 2017-08-11
Publication date: 2017-08-11
Eurasian J Anal Chem 2017;12(6):901–911
An absorbance detector for high-performance liquid chromatography (HPLC) was developed using a commercially available light emitting diode (LED) at 254 nm. Use of the LED was investigated due to its low output power fluctuation, which should minimize noise and maximize performance. This detector has been characterized and used to perform several separations of relevance to the atmospheric chemistry of airborne particulate matter, specifically, brown carbon (BrC) or humic-like substances (HULIS). The study of atmospheric BrC can be aided by sensitive and general detection schemes, such as absorbance detection. Owing to the exceptional output stability of the LED, the absorbance detector exhibited 3 detection limits of 130 nmol/L (18 ppb) for the chromatography of 4-hydroxybenzoic acid and the detector itself demonstrated noise-equivalent absorption of approx. 180 AU. The detector was applied to the separation of products resulting from the photo-Fenton reaction of guaiacol. No fewer than 15 individual peaks are noted in the resulting chromatogram. The sensitivity provided is a valuable tool for the chemical analysis of complex samples requiring chromatography.
Macka, M., Piasecki, T., & Dasgupta, P. K. (2014). Light-emitting diodes for analytical chemistry. Ann. Rev. of Anal. Chem., 7, 183.
Bui, D. A., Hauser, P. C. (2015). Analytical devices based on light-emitting diodes – a review of the state-of-the-art. Anal. Chim. Acta, 853, 46.
Li, Y., Nesterenko, P. N., Paull, B., Stanley, R., & Macka, M. (2016) Performance of a new 235 nm UV-LED based on-capillary photometric detector. Anal. Chem., 88, 12116.
Li, Y., Dvořák, M., Nesterenko, P. N., Stanley, R., Nuchtavorn, N., Kujovská Krčmová L., Aufartová, J., & Macka, M. (2015). Miniaturized medium pressure capillary liquid chromatography system with flexible open platform design using off-the-shelf microfluidic components. Anal. Chim. Acta, 896, 166.
Krcmova, L., Stjernlof, A., Mehlen, S., Hauser, P. C., Abele, S., Paull, B., Macka, M. (2009). Deep-UV-LEDs in photometric detection: A 255 nm LED on-capillary detector in capillary electrophoresis. Analyst, 134, 2394.
Ryvolova, M., Preisler, J., Foret, F., Hauser, P. C., Krasensky, P., Paull, B., & Macka, M. (2010). Combined contactless conductometric, photometric, and fluorimetric single Point Detector for Capillary Separation Methods. Anal. Chem., 82, 129.
Feng, Y., Ramanathan, V., & Kotamarthi, V. R. (2013). Brown carbon: a significant atmospheric absorber of solar radiation? Atmos. Chem. Phys., 13, 8607.
Andreae, M. O., Gelencser, A. (2006). Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131.
Moise, T., Flores, J. M., & Rudich, Y. (2015). Optical properties of secondary organic aerosols and their changes by chemical processes. Chem. Rev., 115, 4400.
Ma, L., & Thompson, J. (2012). Optical properties of dispersed aerosols in the near UV (355 nm): measurement approach and initial data. Anal. Chem., 84, 5611.
Dial, K., Hiemstra, S., & Thompson, J. E. (2010) Simultaneous Measurement of Optical Scattering and Extinction on Dispersed Aerosol Samples. Anal. Chem., 82, 7885.
Saleh, R., Marks, M., Heo, J., Adams, P. J., Donahue, N. M., & Robinson, A. L. (2015). Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. J. Geophys. Res. Atmos., 120, 10285.
Thompson, J., Barta, N., Policarpio, D., & DuVall, R. (2008). Development of a Fixed Frequency Aerosol Albedometer. Optics Express, 16, 2191.
Du, Z., He, K., Cheng, Y., Duan, F., Ma, Y., Liu, J., Zhang, X., Zheng, M., & Weber, R. (2014). A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmos. Environ., 89, 235.
Wei, Y., Ma, L., Cao, T., Zhang, Q., Wu, J., Buseck, P. R., & Thompson, J. (2013). Light scattering and extinction measurements combined with laser-induced incandescence for the real-time determination of soot mass absorption cross section. Anal. Chem., 85, 9181.
Thompson, J., & Myers, K. (2007). Cavity ring-down lossmeter using a pulsed light emitting diode source and photon counting. Meas. Sci. & Technol., 18, 147.
Washenfelder, R. A., Attwood, A. R., Brock, C. A., Guo, H., Xu, L., Weber, R. J., Ng, N. L., Allen, H. M., Ayres, B. R., Baumann, K., Cohen, R. C., Draper, D. C., Duffey, K. C., Edgerton, E., Fry, J. L., Hu, W. W., Jimenez, J. L., Palm, B. B., Romer, P., Stone, E. A., Wooldridge, P. J., Brown, & S. S. (2015). Biomass burning dominates brown carbon absorption in the rural southeastern United States. Geophys. Res. Lett., 42, 653.
Thompson, J. E., & Spangler, H. (2006). Tungsten source integrated cavity output spectroscopy (W-ICOS) for the determination of ambient atmospheric extinction coefficient. Appl. Opt., 45, 2465.
Batmunkh, T., Lee, K., Kim, Y. J., Bae, M., Maskey, S., & Park, K. (2016). Optical and thermal characteristics of carbonaceous aerosols measured at an urban site in Gwangju, Korea, in the winter of 2011. J. Air & Waste Manag. Assoc., 66, 151.
Zhang, Q., & Thompson, J. E. (2014). Effect of particle mixing morphology on aerosol scattering and absorption: A discrete dipole modeling study. GeoResJ, 3–4, 9.
Lin, Y. H., Budisulistiorini, Y. J., Chu, K., Siejack, R. A., Zhang, H., Riva, M., Zhang, Z., Gold, A., Kautzman, K. E., & Surratt, J. D. (2014). Light-absorbing oligomer formation in secondary organic aerosol from reactive uptake of isoprene epoxydiols. Environ. Sci. Technol., 48, 12012.
Teich, M., van Pinxteren, D., Kecorius, S., Wang, Z., & Herrmann, H. (2016). First quantification of imidazoles in ambient aerosol particles: potential photosensitizers, brown carbon constituents, and hazardous components. Environ. Sci. Technol., 50, 1166.
Chang, J., Thompson, J. E. (2010). Characterization of colored oligomeric products formed during irradiation of aqueous solutions containing H2O2 and phenolic compounds. Atmos. Environ., 44, 541.
Powelson, M. H., Espelien, B. M., Hawkins, L. N., Galloway, M. M., & DeHaan, D. O. (2014) Brown carbon formation by aqueous-phase carbonyl compound reactions with amines and ammonium sulfate. Environ. Sci. Technol., 48, 985.
Phillips, S. M., & Smith, G. D. (2015). Further evidence for charge transfer complexes in brown carbon aerosols from excitation–emission matrix fluorescence spectroscopy. J. Phys. Chem. A, 119, 4545.
Tang, H., Wei, Y., & Thompson, J. (2013). The aqueous phase nitration of phenol and benzoic acid studied through flow-gated capillary electrophoresis. Inter. Jour. of Environ. Anal. Chem., 93, 1329.
Jacobson, M. Z. (1999). Isolating nitrated and aromatic aerosols and nitrated aromatic gases as sources of ultraviolet light absorption. J. Geophys. Res., 104, 3527.
Nozière, B., Dziedzic, P., & Córdova, A. (2007) Formation of secondary light-absorbing “fulvic-like” oligomers:, A common process in aqueous and ionic atmospheric particles? Geophys. Res. Lett., 34, L21812.
Tang, H., & Thompson, J. E. (2012). Light-Absorbing Products Form During the Aqueous Phase Reaction of Phenolic Compounds in the Presence of Nitrate and Nitrite with UV Illumination. Open Journal of Air Pollution, 1, 13.
Donahue, N. M., Chuang, W., Epstein, S. A., Kroll, J. H., Worsnop, D. R., Robinson, A. L., Adams, P. J., & Pandis, S. N. (2013). Why do organic aerosols exist? Understanding aerosol lifetimes using the two-dimensional volatility basis set. Environ. Chem., 10, 151.
Li, Y., Pöschl, U., & Shiraiwa, M. (2016). Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmos. Chem. Phys., 16, 3327.
Wei, Y., Cao, T., Thompson, J. E. (2012). The chemical evolution & physical properties of atmospheric organic aerosol: A molecular structure based approach. Atmos. Environ., 62, 199.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F., Aiken, A. C., Chen, Q., Martin, S. T., Farmer, D. K., & Artaxo, P. (2010). A simplified description of the evolution of organic aerosol composition in the atmosphere. Geophys. Res. Lett., 37, L08803.
Koo, B., Knipping, E., & Yarwood, G. (2014). 1.5-Dimensional volatility basis set approach for modeling organic aerosol in CAMx and CMAQ. Atmos. Environ., 95, 158.
Redmond, H., & Thompson, J. (2011). Evaluation of a quantitative structure property relationship (QSPR) for predicting mid-visible refractive index of secondary organic aerosol (SOA). Phys. Chem. Chem. Phys., 13, 6872.
Bateman, A. P., Nizkorodov, S. A., Laskin, J., & Laskin, A. (2010). High-resolution electrospray ionization mass spectrometry analysis of water-soluble organic aerosols collected with a particle into liquid sampler. Anal. Chem., 82, 8010.
Nizkorodov, S. A., Laskin, J., & Laskin, A. (2011). Molecular chemistry of organic aerosols through the application of high-resolution mass spectrometry. Phys. Chem. Chem. Phys., 13, 3612.
Tao, S., Lu, X., Levac, N., Bateman, A. P., Nguyen, T. B., Bones, D. L., Nizkorodov, S. A., Laskin, J., Laskin, A., & Yang, X. (2014). Molecular characterization of organosulfates in organic aerosols from Shanghai and Los Angeles urban areas by nanospray-desorption electrospray ionization high-resolution mass spectrometry. Environ. Sci. Technol., 48, 10993.
Sharma, S., Tolley, H., Farnsworth, P. B., & Lee, M. L. (2015). LED-Based UV Absorption Detector with Low- Detection Limits for Capillary Liquid Chromatography. Anal. Chem., 87, 1381.
Bui, D. A., & Hauser, P. C. (2015). Absorbance detector for capillary electrophoresis based on light-emitting diodes and photodiodes for the deep-ultraviolet range. J. Chrom. A., 1421, 203.
Bomastyk, B., Petrovic, I., & Hauser, P. C. (2011). Absorbance detector for high-performance liquid chromatography based on light-emitting diodes for the deep-ultraviolet range. J. Chrom. A., 1218, 3750.
Aung, T., & Liberko, C. A. (2014). Bringing Photochemistry to the Masses: A Simple, Effective, and Inexpensive Photo-reactor, Right Out of the Box. J. Chem. Educ., 91, 939.