Polymerization Inhibitors and Promoters for Unsaturated Polyester Resins; Use of Solid Phase MicroExtraction and Gas Chromatography Coupled to Mass Spectrometry for the Determination of 4-tert-Butyl Catechol and Acetylacetone
 
More details
Hide details
1
Azienda Ospedaliero-Universitaria Careggi, ITALY
2
Giotto Biotech Srl, Sesto Fiorentino, ITALY
3
Università degli Studi di Firenze, ITALY
CORRESPONDING AUTHOR
Stefano Dugheri   

Laboratorio di Igiene e Tossicologia Industriale, Azienda Ospedaliero-Universitaria Careggi, Firenze, ITALY, Largo P.Palagi,1, 50100 Firenze, Italy
Online publish date: 2017-08-14
Publish date: 2017-08-14
 
Eurasian J Anal Chem 2017;12(6):939–951
KEYWORDS
TOPICS
ABSTRACT
This paper reports a contribution of three on-sample derivatization sampling techniques for acetylacetone, 4-tert-butyl catechol and its oxidated derivatives 4-tert-butyl-1,2-benzoquinone determination in unsaturated polyester resins. The use of O-(2,3,4,5,6, pentafluorobenzyl)-hydroxylamine, trimethyloxonium tetrafluoroborate and O-methyl-hydroxylamine is combined with automated head space/solid phase microextraction and gas chromatography/mass spectrometry analysis. For an innovative powerful meaning in high-throughput routine, the generality of the structurally informative mass spectrometry fragmentation patterns together with the chromatographic separation are also investigated. The detection limits for these polymerization inhibitors and promoters are less than 27 pg for one mg of unsaturated polyester resin. In this study a new autosampler platform is proposed by using the Multi Fiber Exchange device in a xyz robotic system. We promote these methods as the analytical reference in the polyester resin field. The introduction of dedicated, automated, and robotic systems allowed a friendly use of MS apparatus for high-throughput screening and it reduces the costs of monitoring campaigns.
 
REFERENCES (38)
1.
Unsaturated Polyester Resin (UPR) Market Analysis By Product (DCPD, Orthopthalic, Isopthalic), By End-Use (Pipes & Tanks, Building & Construction, Electrical, Marine, Transport, Artificial Stones) And Segment Forecasts To 2020. (2014) http://www.grandviewresearch.c... (Grand View Research, Inc.).
 
2.
Andrews K, Bingham S, McAninch I, Greer C, Sands JM, La Scala JJ, Geng X, Palmese GM, Crisostomo V, and Suib S (2009) Analysis of Commercial Unsaturated Polyester Repair Resins, ARL-TR-4872. U.S. Army Research Laboratory (ARL).
 
3.
Malik, M., Choudhary, V., & Varma, I. K. (2000). Current status of unsaturated polyester resins. J.Macromol. Sci.-Rev. Macromol. Chem. Phys, 40(2–3), 139.
 
4.
Luce, C. C., Humphrey, E. F., Guild, L. V., Norrish, H. H., Coull, J., & Castor, W. W. (1964). Analysis of Polyester Resins by Gas Chromatography. Anal. Chem., 36(3), 482.
 
5.
Stamatakis, G., Knuutinen, U., Laitinen, K., & Spyros, A. (2010). Analysis and aging of unsaturated polyester resins in contemporary art installations by NMR spectroscopy. Anal. Bioanal. Chem., 398(7-8), 3203.
 
6.
Autran, M., Pauliard, R., Gautier, L., Mortaigne, B., Mazeas, F., & Davies, P. (2002). Influence of mechanical stresses on the hydrolytic aging of standard and low styrene unsaturated polyester composites. J. Appl. Polym. Sci., 84, 2185.
 
7.
Bartelt, R. J. (1997). Calibration of a commercial solid-phase microextraction device for measuring headspace concentrations of organic volatiles. Anal. Chem., 69(3), 364.
 
8.
Bianchi, F., Bisceglie, F., Dugheri, S., Arcangeli, G., Cupelli, V., Del Borrello, E., Sidisky, L., & Careri, M. (2014). Ionic liquid-based solid phase microextraction necklaces for the environmental monitoring of ketamine. J. Chromatogr. A, 1331, 1.
 
9.
Kremser, A., Jochmann, M. A., & Schmidt, T. C. (2016). SPME Arrow - Evaluation of a Novel Solid-Phase Microextraction Device for Freely Dissolved PAHs in Water. Anal.Bional.Chem., 408(3), 943.
 
10.
Abdel-Rehim, M., Altun, Z., & Blomberg, L. (2011). Microextraction in packed syringe (MEPS) for liquid and gas chromatographic applications. Part II--Determination of ropivacaine and its metabolites in human plasma samples using MEPS with liquidchromatography/tandem mass spectrometry. J. Mass Spectrom, 39(12), 1488.
 
11.
David, F., & Sandra, P. (2007). Stir bar sorptive extraction for trace analysis. J Chromatogr A, 1152(1-2), 54.
 
12.
Rossbach, B., Kegel, P., & Letzel, S. (2012). Application of headspace solid phase dynamic extraction gas chromatography/mass spectrometry (HS-SPDE-GC/MS) for biomonitoring of n-heptane and its metabolites in blood. Toxicol. Lett., 210(2), 232.
 
13.
Laaks, J., Jochmann, M. A., Schilling, B., & Schmidt, T. C. (2015). Optimization strategies of in-tube extraction (ITEX) methods. Anal. Bioanal. Chem., 407(22), 6827.
 
14.
Singh, D. K., Sanghi, S. K., Gowri, S., Chandra, N., & Sanghi, S. B. (2011). Determination of aliphatic amines by gas chromatography-mass spectrometry after in-syringe derivatization with pentafluorobenzoyl chloride. J. Chromatogr. A, 1218(33), 5683.
 
15.
Pedersen-Bjergaard, S., & Rasmussen, K. E. (1999). Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis. Anal. Chem., 71(14), 2650.
 
16.
Saraji, M., & Ghani, M. (2015). Hollow fiber liquid-liquid-liquid microextraction followed by solid-phase microextraction and in situ derivatization for the determination of chlorophenols by gas chromatography-electron capture detection. J. Chromatogr. A, 1418, 45.
 
17.
Rezaee, M., Assadi, Y., Milani Hosseini, M. R., Aghaee, E., Ahmadi, F., & Berijani, S. (2006). Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A, 1116(1-2), 1.
 
18.
Kamarei, F., Ebrahimzadeh, H., &Yamini, Y. (2010). Optimization of solvent bar microextraction combined with gas chromatography for the analysis of aliphatic amines in water samples. J. Hazard Mater, 178(1-3), 747.
 
19.
Ferreira, A. M., Laespada, M. E., Pavón, J. L., & Cordero, B. M. (2013). In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations. J. Chromatogr. A, 1296, 70.
 
20.
Baghdady, Y. Z., & Schug, K. A. (2016). Review of in situ derivatization techniques for enhanced bioanalysis using liquid chromatography with mass spectrometry. J. Sep. Sci., 39(1), 102.
 
21.
Handley, J., & Harris, C. M. (2001). Great ideas of a decade. Anal. Chem., 73(23), 660.
 
22.
Dugheri, S., Bonari, A., Pompilio, I., Mucci, N., Montalti, M., & Arcangeli, G. (2016). Development of new gas chromatography/mass spectrometry procedure for the determination of hexahydrophthalic anhydride in unsaturated polyester resins. Rasayan J. Chem, 9(4), 657.
 
23.
Stolwijk, T. B., Sudhölter, E. J. R., & Reinhoudt, D. N. (1989). Effect of crown ether lipophilicity on the facilitated transport of guanidinium thiocyanate through an immobilized liquid membrane. J. Am. Chem. Soc., 111, 6321.
 
24.
Duan, X., Zhong, D., & Chen, X. (2008). Derivatization of β-dicarbonyl compound with 2,4- dinitrophenylhydrazine to enhance mass spectrometric detection, application in quantitative analysis of houttuynin in human plasma. Journal of Mass Spectrometry, 43(6), 814.
 
25.
Konidari, C. N., Stalikas, C. D., & Karayannis, M. I. (2001). Gas chromatographic method for the sensitive determination of 2,5-hexanedione using electron capture and mass-selective detection. Analytica Chimica Acta, 442(2), 231.
 
26.
Stashenko, E. E., Puertas, M. A., Salgar, W., Delgado, W., & Martínez, J. R. (2000). Solid-phase microextraction with on-fibre derivatisation applied to the analysis of volatile carbonyl compounds. In situ aqueous derivatization as sample preparation technique for gas chromatographic determinations. J. Chromatogr. A, 886(1-2), 175.
 
27.
Pacenti, M., Dugheri, S., Traldi, P., Degli Esposti, F., Perchiazzi, N., Franchi, E., Calamante, M., Kikic, I., Alessi, P., Bonacchi, A., Salvadori, E., Arcangeli, G., & Cupelli, V. (2010). New automated and high-throughput quantitative analysis of urinary ketones by multifiber exchange-solid phase microextraction coupled to fast gas chromatography/negative chemical-electron ionization/mass spectrometry. V. J. Autom. Methods. Manag. Chem.
 
28.
Flores, R. M., & Doskey, P. V. (2015). Evaluation of multistep derivatization methods for identification and quantification of oxygenated species in organic aerosol. J. Chromatogr. A, 1418, 1.
 
29.
Middleditch, B. S., & Knights, B. A. (1972). The mass spectra of some O-methyloximes of aliphatic aldehydes and ketones. Org. Mass Spectrom, 6, 179.
 
30.
Hussain, H., Specht, S., Sarite, S. R., Saeftel, M., Hoerauf, A., Schulz, B., & Krohn, K. (2011). A New Class of Phenazines with Activity against a Chloroquine Resistant Plasmodium falciparum Strain and Antimicrobial Activity. J. Med. Chem., 54(13) 4913.
 
31.
Mederos, A., Dominguez, S., Hernandez-Molina, R., Sanchiz, J., & Britom F. (1999). Coordinating ability of phenylenediamines. Coord. Chem. Rev., 193-195, 913.
 
32.
Liebich, H. M., & Gesele, E. (1999). Profiling of organic acids by capillary gas chromatography-mass spectrometry after direct methylation in urine using trimethyloxonium tetrafluoroborate. J. Chromatogr. A, 843(1-2), 237.
 
33.
Zhang, Z., & Pawliszyn, J. (1993). Headspace solid-phase microextraction. J. Anal. Chem., 65(14), 1843.
 
34.
Pacenti, M., Dugheri, S., Villanelli, F., Bartolucci, G., Calamai, L., Boccalon, P., Arcangeli, G., Vecchione, F., Alessi, P., Kikic, I., & Cupelli, V. (2008). Determination of organic acids in urine by solid-phase microextraction and gas chromatography-ion trap tandem mass spectrometry previous ‘in sample’ derivatization with trimethyloxonium tetrafluoroborate. Biomed. Chromatogr., 22(10), 1155.
 
35.
Setschenow, J. (1889). Z.Uber die konstitution der salzlosungenauf grund ihres verhaltens zu kohlensaure Z. Phys. Chem., 4, 117– 125.
 
36.
Fiorini, D., Pacetti, D., Gabbianelli, R., Gabrielli, S., & Ballini, R. (2015). A salting out system for improving the efficiency of the headspace solid-phase microextraction of short and medium chain free fatty acids. J. Chromatogr. A, 1409, 282.
 
37.
Bretti, C., Crea, F., Foti, C., & Sammartano, S. (2006). Solubility and Activity Coefficients of Acidic and Basic Nonelectrolytes in Aqueous Salt Solutions. 2. Solubility and Activity Coefficients of Suberic, Azelaic, and Sebacic Acids in NaCl(aq), (CH3)4NCl(aq), and (C2H5)4NI(aq) at Different Ionic Strengths and at t = 25 °C. J. Chem. Eng., 51(5), 1660.
 
38.
Fiorini, D., Boarelli, M. C., Gabbianelli, R., Ballini, R., & Pacetti, D. (2016). A quantitative headspace-solid-phase microextraction-gas chromatography-flame ionization detector method to analyze short chain free fatty acids in rat feces. Anal. Biochem., 508, 12.
 
eISSN:1306-3057