Spectral Study of 1,4-bis(3-(2-pyridyl)pyrazol-1-ylmethyl)benzene (PPB): UV-VIS Absorption Spectra Investigation in Single and Binary Solvents and Spectrophotometric Determination of the Dissociation Constant (pKb)
More details
Hide details
Benghazi University, LIBYA
Misurata University, LIBYA
Khaled Muftah Elsherif   

Department of Chemistry, Benghazi University, Benghazi, Libya
Online publish date: 2016-12-06
Publish date: 2016-12-06
Eurasian J Anal Chem 2017;12(1):67–82
The effect of solvents of different polarity and hydrogen bonding ability on electronic absorption spectra of PPB was investigated. UV absorption spectra (200-400 nm) were recorded in five single solvents and one binary solvent (DCM-EtOH). PPB has two absorption maxima (250 and 280 nm) due to pyridyl pyrazole and benzene systems. The spectral shifts and absorption maxima in various solvents were correlated with the Kamlet and Taft parameters (α, β and π*) using linear solvation energy relationships. The multiparametric analysis indicates that hydrogen bond donor ability of the solvent (for band I) and non-specific dipolar interactions of the solvents (for band II) play an important role in absorption maxima of PPB in pure solvents. Index of preferential solvation was calculated as a function of solvent composition. Preferential solvation by ethanol (band I) and by dichloromethane (band II) was detected in DCM-EtOH solvent mixture. The pKb of PPB in two solvent mixtures; EtOH – H2O & THF – H2O, were determined using UV-Vis spectrophotometry. Two graphical methods were used to estimate the base dissociation constant (pKb) using absorbance measurements. The resulting average of pKb values in the two solvent mixtures using the two methods were 10.77 and 11.14 with a standard deviation of 0.03 & 0.33, respectively.
Tidmarsh, I. S., Faust, T. B., Adams, H., Harding, L. P., Russo, L., Clegg, W., & Ward, M. D. (2008). Octanuclear Cubic Coordination Cages. J. Am. Chem. Soc. 130: 15167.
Kashiwame, Y., Watanabe, M., Araki, K., Kuwata, S., & Ikariya, T. (2011). Synthesis, Structure, and Proton-Transfer Reactions of Brønsted Acidic Pyridylpyrazole Complexes of Ruthenium. Bull Chem Soc Jpn. 84(3): 251.
Trofimenko, S. (1999). Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands, Imperial College Press, London.
Büchel, G. E., Stepanenko, I. N., Hejl, M., Jakupec, M. A., Arion, V. B., & Keppler, B. K. (2009). [OsIVCl5(Hazole)]− Complexes: Synthesis, Structure, Spectroscopic Properties, and Antiproliferative Activity. Inorg Chem. 48: 10737.
Chi, Y., & Chou, P. T. (2010). Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chem Soc Rev. 39: 638.
de Almeida, K. J., Ramalho, T. C., Rinkevicius, Z., Vahtras, O., Ågren, H., Cesar, A. (2011). Theoretical study of specific solvent effects on the optical and magnetic properties of copper(II) acetylacetonate. J. Phys. Chem. A 115: 1331.
Kosenkov, D., & Slipchenko, L. V. (2011). Solvent effects on the electronic transitions of p-nitroaniline: A QM/EFP study. J. Phys. Chem. A 115: 392.
Sidir, Y. G., Sidir, I., Tasal, E., & Ermis, E. (2011). Studies on the electronic absorption spectra of some monoazo derivatives. Spectrochim. Acta A 78: 640.
Adegoke, O. A., & Olakunle, S. I. (2010). Solvatochromic behaviours and structure–spectra relationships of 4-carboxyl-2,6-dinitrophenylazohydroxynaphthalenes. Spectrochim. Acta A 75: 719.
Baughman, B. M., Stennett, E., Lipner, R. E., Rudawsky, A. C., & Schmidtke, S. J. (2009). Structural and spectroscopic studies of the photophysical properties of benzophenone derivatives. J. Phys. Chem. A 113: 8011.
Matias, I. S., Maria, C. A., Sonia, E. B., & Eduardo, A. C. (2011). Spectroscopic Study of Solvent Effects on the Electronic Absorption Spectra of Flavone and 7-Hydroxyflavone in Neat and Binary Solvent Mixtures. Int. J. Molecular Sci. 12: 8895.
Han, W., Liu, T., Himo, F., Toutchkine, A., Bashford, D., Hahn, K. M., & Noodleman, L. A. (2003). A theoretical study of the UV/visible absorption and emission solvatochromic properties of solvent-sensitive dyes. Chemphyschem 4: 1084.
Reichardt, C., in Solvents and Solvent Effects in Organic Chemistry (2004). Wiley-Vch Verlag GmbH & Co. KGaA, Wienheim, p. 329.
Józefowicz, M., Kozyra, K. A., Heldt, J. R., & Heldt, J. (2005). Effect of hydrogen bonding on the intramolecular charge transfer fluorescence of 6-dodecanoyl-2-dimethylaminonaphtalene. Chem. Phys. 320: 45.
Taft, R. W., & Kamlet, M. J. (1976). The solvatochromic comparison method. 2. The α-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98: 2886.
Kamlet, M. J., Doherty, R., Taft, R., & Abraham, M. (1983). Linear solvation energy relationships. 26. Some measures of relative self-association of alcohols and water. J. Am. Chem. Soc. 105: 6741.
Zscherp, C., Schlesinger, R., Tittor, J., Oesterhelt D., & Heberle, J. (1999). In situ determination of transient pKa changes of internal amino acids of bacteriorhodopsin by using time-resolved attenuated total reflection Fourier-transform infrared spectroscopy. Proceedings of the National Academy of Sciences 96: 5498.
Baran, Y., Baran, S., & Kemal, N. (1997). Spectrophotometric Determination of the pKa Values of Some Aminoacid Complexes of Pentacyanoferrate(II) and Pentacyanoruthenate(II). J Chem. 21: 105.
Meloun, M., Bordovská, S., & Vrana, A. (2007). The Thermodynamic Dissociation Constants of the Anticancer Drugs Camptothecine, 7-Ethyl-10-hydroxycamptothecine, 10-Hydroxycamptothecine and 7-Ethylcamptothecine by the Least-Squares Nonlinear Regression of Multiwavelength Spectrophotometric pH-Titration Data. Anal. Chim. Acta 584: 419.
Vidal Salgado, L. E., & Vargas-Hernández C. (2014). Spectrophotometric Determination of the pKa, Isosbestic Point and Equation of Absorbance vs. pH for a Universal pH Indicator. Am. J. Anal. Chem. 5: 1290.
Kong, X., Zhou, T., Liu, Z., & Hider, R.C. (2007). pH Indicator Titration: A Novel Fast pKa Determination Method. J. Pharm. Sci. 96: 2777.
Meloun, M., Ferencíková, Z., & Vrána, A. (2011). Determination of the Thermodynamic Dissociation Constant of Capecitabine Using Spectrophotometric and Potentiometric Titration Data. J. Chem. Therm. 43: 930.
Tam, K. Y., Hadley, M., & Patterson, W. (1999). Multiwavelength Spectrophotometric Determination of Acid Dissociation Constants: Part IV. Water-Insoluble Pyridine Derivatives. Talanta 49: 539.
Bell, Z. R., Harding, L. P., Ward, M. D. (2003). Self-assembly of a molecular M8L12 cube having S6 symmetry. Chem. Commun. 2432.
Argent, S. P., Adams, H., Harding, L. P., & Ward, M. D. (2006). A closed molecular cube and an open book: two different products from assembly of the same metal salt and bridging ligand. Dalton Trans. 542.
Marcus, Y. (1993). The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22: 409.
Frankel, L. S., Langford, C. H., & Stengle, T. R. (1970). Nuclear magnetic resonance techniques for the study of preferential solvation and the thermodynamics of preferential solvation. J. Phys.Chem. 74: 1376.
Chatterjee, P., & Bagchi, S. (1991). Preferential solvation of a dipolar solute in mixed binary solvent: A study of UV-visible spectroscopy. J. Phys. Chem. 95: 3311.
Skoog, D., & Leary, J. (1994). Análisis Instrumental. McGraw-Hill, Madrid.
Vogel, A. (1969). Química Analítica Cuantitativa: Teoría y Práctica. Editorial Kapelusz, Buenos Aires.