Synthesis of CdTiO3 Thin Films and Study the Impact of Annealing Temperature on their Optical, Morphological and Structural Properties
More details
Hide details
Department of Chemistry, College of Science, University of AL-Qadisiyah, Dewanyia 1753, IRAQ
Publication date: 2018-09-19
Eurasian J Anal Chem 2018;13(5):em56
CdTiO3 thin films (TF) were deposited on conductive glass substrate (ITO) at different annealing temperatures (300, 400, 500, 600) °C by a doctor building method with composition ratio (1:1) of TiO2 and CdO. Many techniques such as: Energy Dispersive Spectroscopy (EDS), X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Ultraviolet – Visible Spectroscopy (UV-Vis) were used to describe the structure, morphology and optical characteristics of prepared TF. XRD patterns show the rhombohedral structure and crystalline nature of the films. All films were nano materials according to Scherrer equation in XRD analysis. SEM images relate the homogenous films as thickly stuffed nano particles. AFM analysis demonstrated that both the surface roughness and grain size rise slightly with increasing temperature. EDS investigation approves the existence of oxygen, cadmium and titanium components with equal atomic ratios of cadmium and titanium. By application of Tauc plots, optical band gaps of CdTiO3 films are proposed to be (2.25-1.73) ev at the range of temperatures (400-600) °C.
Jung HS, Park NG. Perovskite solar cells: from materials to devices. Small. 2015;11:10-25.
Goodenough JB, Zhou J-S. Transport properties. Localized to itinerant electronic transition in perovskite oxides. Springer. 2001.
Goodenough J. Electronic and ionic transport properties and other physical aspects of perovskites. Reports on Progress in Physics. 2004;67:1915.
Dekock RL, Gray HB. Chemical structure and bonding, University Science Books. 1989.
Haase W. FA Cotton: Chemical Applications of Group Theory, John Wiley & Sons Ltd., Baffins Lane 1971, p. 386. Berichte der Bunsengesellschaft für physikalische Chemie. 1972;76:173-173.
Burdett JK. Chemical bonding in solids, Oxford University Press. 1995.
Singhal SC, Kendall K. High-temperature solid oxide fuel cells: fundamentals, design and applications, Elsevier. 2003.
Hao X, Zhai J, Kong LB, Xu Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Progress in materials science. 2014;63:1-57.
Chauhan A, Patel S, Vaish R, Bowen CR. Anti-ferroelectric ceramics for high energy density capacitors. Materials. 2015;8:8009-8031.
Valant M. Electrocaloric materials for future solid-state refrigeration technologies. Progress in Materials Science. 2012;57:980-1009.
Kong LB, Li T, Hng HH, Boey F, Zhang T, Li S. Waste energy harvesting, Springer. 2014.
T Schneller T, Halder S, Waser R, Pithan C, Dornseiffer J, Shiratori Y, Houben L, Vyshnavi N, Majumder SB. Nanocomposite thin films for miniaturized multi-layer ceramic capacitors prepared from barium titanate nanoparticle based hybrid solutions. Journal of materials chemistry. 2011;21:7953-7965.
Kingon AI, Srinivasan S. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications. Nature materials. 2005;4:233.
Ansell TY, Cann DP. High temperature piezoelectric ceramics based on (1− x)[BiScO3+ Bi (Ni1/2Ti1/2) O3]− xPbTiO3. Materials Letters. 2012;80:87-90.
Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M. High performance lead-free piezoelectric material. Nature. 2004;432:84-87.
Ma J, Shi Z, Nan CW. Magnetoelectric Properties of Composites of Single Pb (Zr, Ti) O3 Rods and Terfenol‐D/Epoxy with a Single‐Period of 1‐3‐Type Structure. Advanced Materials. 2007;19:2571-2573.
Wang X, Xu CN, Yamada H, Nishikubo K, Zheng XG. Electro‐Mechano‐Optical Conversions in Pr3+‐Doped BaTiO3–CaTiO3 Ceramics. Advanced Materials. 2005;17:1254-1258.
Bele A, Cazacu M, Stiubianu G, Vlad S. Silicone–barium titanate composites with increased electromechanical sensitivity. The effects of the filler morphology. RSC Advances. 2014;4:58522-58529.
Matsubara K, Fons P, Iwata K, Yamada A, Sakurai K, Tampo H, Niki S. ZnO transparent conducting films deposited by pulsed laser deposition for solar cell applications. Thin Solid Films. 2003;431:369-372.
Chan H, Choy S, Chong C, Li H, Liu P. Bismuth sodium titanate based lead-free ultrasonic transducer for microelectronics wirebonding applications. Ceramics international. 2008;34:773-777.
Santander-Syro A, Copie O, Kondo T, Fortuna F, Pailhes S, Weht R, Qiu X, Bertran F, Nicolaou A, Taleb-Ibrahimi A. Two-dimensional electron gas with universal subbands at the surface of SrTiO 3. Nature. 2011;469:189.
Surendar T, Kumar S, Shanker V. Influence of La-doping on phase transformation and photocatalytic properties of ZnTiO 3 nanoparticles synthesized via modified sol–gel method. Physical Chemistry Chemical Physics. 2014;16:728-735.
Mayén-Hernández S, Torres-Delgado G, Castanedo-Pérez R, Mendoza-Alvarez J, Zelaya-Angel O. Optical and structural properties of CdO+ CdTiO3 thin films prepared by sol–gel. Materials Chemistry and Physics. 2009;115:530-535.
Mohammadi M, Fray D. Low-temperature perovskite-type cadmium titanate thin films derived from a simple particulate sol–gel process. Acta Materialia. 2009;57:1049-1059.
Yang LY, Feng GP, Wang TX, Zhang JM, Lou TJ. Low temperature preparation and characterization of CdTiO3 nanoplates. Materials Letters. 2011;65:2601-2603.
Imran Z, Batool S, Israr M, Sadaf J, Usman M, Jamil H, Javed M, Rafiq M, Hasan M, Nur O. Fabrication of cadmium titanate nanofibers via electrospinning technique. Ceramics International. 2012;38:3361-3365.
Hassan MS, Amna T, Khil M-S. Synthesis of high aspect ratio CdTiO3 nanofibers via electrospinning: characterization and photocatalytic activity. Ceramics International. 2014;40:423-427.
Rabe KM, Ahn CH, Triscone J-M. Physics of ferroelectrics: a modern perspective, Springer Science & Business Media. 2007.
Sasaki S, Prewitt CT, Bass JD, Schulze W. Orthorhombic perovskite CaTiO3 and CdTiO3: structure and space group. Acta Crystallographica Section C: Crystal Structure Communications. 1987;43:1668-1674.
Smolenski G. A New Dielectric Ceramic Based on Pb (TixZr1–x) O3. Dokl. Akad. Nauk. SSSR, 1950. 405.
El-Mallah H, Watts B, Wanklyn B. Birefringence of CaTiO3 and CdTiO3 single crystals as a function of temperature. Phase Transitions: A Multinational Journal. 1987;9:235-245.
Sun P-H, Nakamura T, Shan YJ, Inaguma Y, Itoh M. The study on the dielectric property and structure of perovskite titanate CdTiO3. Ferroelectrics. 1998;217:137-145.
Shan YJ, Mori H, Wang R, Luan W, Imoto H, Mitsuruitoh, Nakamura T. Powder X-ray diffraction study of ferroelectric phase transition in perovskite oxide CdTiO3. Ferroelectrics. 2001;259:85-90.
Gorshunov B, Pronin A, Kutskov I, Volkov A, Lemanov V, Torgashev V. Polar phonons and specific features of the ferroelectric states in cadmium titanate. Physics of the Solid State. 2005;47:547-555.
Ridha S, Essebti D, Hlil EK. Impact of Annealing Temperature on the Physical Properties of the Lanthanum Deficiency Manganites. Crystals. 2017;7:301.
Castillo JH, Rodriguez FJ, Vigil AL-M, Sanchez-Mora E, Quiroz MA, Bandala ER. Synthesis, Structural Characterization and Photocatalytic Activity of Iron-Doped Titanium Dioxide Nanopowders. Journal of Technology Innovations in Renewable Energy. 2015;4:1-9.
Chopra KL, Das SR. Why thin film solar cells? Thin film solar cells. Springer. 1983.
Salman SA, Khodair ZT, Abed SJ. Study the Effect of Substrate Temperature on the Optical Properties of CoFe2O4 Films Prepared by Chemical Spray Pyrolysis Method. 2015.