Synthesis of Poly(Benzyl- eugenol) and Its Application as an Ionophore for a Potassium Ion-Selective Electrode
 
More details
Hide details
1
Department of Chemistry, Universitas Gadjah Mada, Indonesia
Publication date: 2017-10-26
 
Eurasian J Anal Chem 2016;11(3):115–125
 
KEYWORDS
ABSTRACT
Poly(benzyl eugenol)(PBE) as novel ionophores for a K+ ion selective electrode was synthesized by acid catalyzed polymerization of benzyl eugenol. The polymerization product was characterized by IR and 1H NMR. The electrode membranes based on the polymer were prepared in the composition of 3 wt% of PBE, (67-n) wt% of 2-nitrophenyl octyl ether (o-NPOE) as a membrane plasticizer, n wt% of oleic acid as a lipophilic anionic additive (which n were varied from 0-10) and 30 wt% of PVC as a membrane matrix. Each membrane electrode was characterized for their performance as an ion-selective electrode membrane, that was selectivity, Nernst factor, limit of detection (l.o.d.), response time, and lifetime. Experimental results showed that the electrode membrane based on PBE with 3 wt% of oleic acid exhibited the best selectivity for K+ ion relative to other alkali and alkali earth metal ion. The K+-ISE based on PBE with the membrane composition of 3 wt% PBE, 3 wt% oleic acid, 64 wt% o-NPOE and 30 wt% PVC exhibited potentiometric selectivity toward NH4+, Na+, Mg2+, Ca2+, Ba2+ and Al3+ of -0.6; -1.3; -3.2; -2.5, -2.2 and -2.5; respectively. This electrode gave a sub-Nernstian response with a slope of 56.3 mV/decade; the response time of c.a. 30 s; the dynamic range of 10-4 – 10-1 M and limit of detection of 10-4.7 M. The electrode may be used for continuous measurement at least up to two weeks.
 
REFERENCES (35)
1.
Sahani, M. K., Singh, A. K., Jain, A. K., Upadhyay, A., Kumar, A., Singh, U. P. & Narang, S. (2015). Fabrication of novel coated pyrolytic graphite electrodes for the selective nano-level monitoring of Cd2+ ions in biological and environmental samples using polymeric membrane of newly synthesized macrocycle. Anal. Chim. Acta, 860, 51–60. doi:10.1016/j.aca.2014.12.023.
 
2.
Somer, G., Yilmaz, U. T. & Kalaycı, Ş. (2015). Preparation and properties of a new solid state arsenate As(V) ion selective electrode and its application. Talanta, 142, 120–123. doi:10.1016/j.talanta.2015.04.036.
 
3.
Abu Shawish, H. M., Tamous, H., Saadeh, S. M., Abed-Almonem, K. I. & Al Khalili, O. (2015). A new approach for decreasing the detection limit for a ketamine(I) ion-selective electrode. Mater. Sci. Eng. C. Mater. Biol. Appl., 49, 445–51. doi:10.1016/j.msec.2015.01.010.
 
4.
Parsaei, M., Asadi, Z. & Khodadoust, S. (2015). A sensitive electrochemical sensor for rapid and selective determination of nitrite ion in water samples using modified carbon paste electrode with a newly synthesized cobalt(II)-Schiff base complex and magnetite nanospheres. Sensors Actuators B Chem., 220, 1131–1138. doi:10.1016/j.snb.2015.06.096.
 
5.
Jasiński, A., Guziński, M., Lisak, G., Bobacka, J., & Bocheńska, M. (2015). Solid-contact lead(II) ion-selective electrodes for potentiometric determination of lead(II) in presence of high concentrations of Na(I), Cu(II), Cd(II), Zn(II), Ca(II) and Mg(II). Sensors Actuators B Chem., 218, 25–30. doi:10.1016/j.snb.2015.04.089.
 
6.
Erno Pungor. (1998). The Theory of Ion-Selective Electrodes. Anal. Sci., 14(April), 249–256.
 
7.
Pedersen, C. J. (1988). The Discovery of Crown Ethers. Sci. , 241 (4865 ), 536–540. doi:10.1126/science.241.4865.536.
 
8.
Yan, Z., Lu, Y., Wang, H., Wu, S. & Zhao, B. (2013). A heterocycle functionalized p-tert-butylcalix[4]arene as a neutral carrier for silver (I) ion-selective electrode. J. Mol. Liq., 183, 72–78. doi:10.1016/j.molliq.2013.04.011.
 
9.
Dadkhah, A., Rofouei, M. K., & Mashhadizadeh, M. H. (2014). Synthesis and characterization of N,N′-bis(benzophenone imine)formamidine as ionophores for silver-selective electrodes. Sensors Actuators B Chem., 202, 410–416. doi:10.1016/j.snb.2014.05.090.
 
10.
Kermani, S. M. J. M., Ghanei-Motlagh, M., Zhiani, R., Taher, M. A., Fayazi, M. & Razavipanah, I. (2015). Novel solid-state mercury(II)-selective electrode based on symmetrical sulfur-containing carrier. J. Mol. Liq., 206, 145–150. doi:10.1016/j.molliq.2015.02.006.
 
11.
Bakhtiarzadeh, F. & Ab Ghani, S. (2008). An ion selective electrode for mercury(II) based on mercury(II) complex of poly(4-vinyl pyridine). J. Electroanal. Chem., 624(1-2), 139–143. doi:10.1016/j.jelechem.2008.08.007.
 
12.
Sardohan-Koseoglu, T., Kir, E., & Dede, B. (2015). Preparation and analytical application of the novel Hg(II)-selective membrane electrodes based on oxime compounds. J. Colloid Interface Sci., 444, 17–23. doi:10.1016/j.jcis.2014.12.025.
 
13.
Wilson, D., Arada, M. de los A., Alegret, S., & del Valle, M. (2010). Lead(II) ion selective electrodes with PVC membranes based on two bis-thioureas as ionophores: 1,3-bis(N’-benzoylthioureido)benzene and 1,3-bis(N'-furoylthioureido)benzene. J. Hazard. Mater., 181(1-3), 140–6. doi:10.1016/j.jhazmat.2010.04.107.
 
14.
Wardak, C. (2011). A highly selective lead-sensitive electrode with solid contact based on ionic liquid. J. Hazard. Mater., 186(2-3), 1131–5. doi:10.1016/j.jhazmat.2010.11.103.
 
15.
Guziński, M., Lisak, G., Kupis, J., Jasiński, A., & Bocheńska, M. (2013). Lead(II)-selective ionophores for ion-selective electrodes: a review. Anal. Chim. Acta, 791, 1–12. doi:10.1016/j.aca.2013.04.044.
 
16.
Huang, M.-R., Rao, X.-W., Li, X.-G., & Ding, Y.-B. (2011). Lead ion-selective electrodes based on polyphenylenediamine as unique solid ionophores. Talanta, 85(3), 1575–84. doi:10.1016/j.talanta.2011.06.049.
 
17.
HUANG, M.-R., RAO, X.-W., & LI, X.-G. (2008). Nitrogen-Bearing Organic Compounds as Carriers for Lead Ion-Selective Electrodes with Excellent Response. Chinese J. Anal. Chem., 36(12), 1735–1741. doi:10.1016/S1872-2040(09)60011-6.
 
18.
Yan, Z., Wang, S., Wang, H., & Wu, S. (2013). Bismuth (III) PVC membrane ion selective electrodes based on two compounds: acylhydrazone and thiosemicarbazone with 1,3,4-thiadiazole. Mater. Sci. Eng. C. Mater. Biol. Appl., 33(5), 2562–8. doi:10.1016/j.msec.2013.02.017.
 
19.
Ramanjaneyulu, P. S., Kumar, A. N., Sayi, Y. S., Ramakumar, K. L., Nayak, S. K., & Chattopadhyay, S. (2012). A new ion selective electrode for cesium (I) based on calix[4]arene-crown-6 compounds. J. Hazard. Mater., 205-206, 81–8. doi:10.1016/j.jhazmat.2011.12.017.
 
20.
Chester, R., Sohail, M., Ogden, M. I., Mocerino, M., Pretsch, E., & De Marco, R. (2014). A calixarene-based ion-selective electrode for thallium(I) detection. Anal. Chim. Acta, 851, 78–86. doi:10.1016/j.aca.2014.08.046.
 
21.
HUANG, M.-R., GU, G.-L., SHI, F.-Y., & LI, X.-G. (2012). Development of Potentiometric Lead Ion Sensors Based on Ionophores Bearing Oxygen/Sulfur-Containing Functional Groups. Chinese J. Anal. Chem., 40(1), 50–58. doi:10.1016/S1872-2040(11)60521-5.
 
22.
Singh, P., Singh, A. K., & Jain, A. K. (2011). Electrochemical sensors for the determination of Zn2+ ions based on pendant armed macrocyclic ligand. Electrochim. Acta, 56(15), 5386–5395. doi:10.1016/j.electacta.2011.03.090.
 
23.
Gupta, V. K., Kumar, S., Singh, R., Singh, L. P., Shoora, S. K., & Sethi, B. (2014). Cadmium (II) ion sensing through p-tert-butyl calix[6]arene based potentiometric sensor. J. Mol. Liq., 195, 65–68. doi:10.1016/j.molliq.2014.02.001.
 
24.
Singhal, D., Singh, A. K., & Upadhyay, A. (2014). Highly selective potentiometric and colorimetric determinations of cobalt (II) ion using thiazole based ligands. Mater. Sci. Eng. C. Mater. Biol. Appl., 45, 216–24. doi:10.1016/j.msec.2014.09.014.
 
25.
Shokrollahi, A., Abbaspour, A., Ghaedi, M., Haghighi, A. N., Kianfar, A. H., & Ranjbar, M. (2011). Construction of a new Cu2+ coated wire ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylidene amino)phenyl)disufanyl)phenylimino)methyl)-4-methoxyphenol Schiff base. Talanta, 84(1), 34–41. doi:10.1016/j.talanta.2010.12.002.
 
26.
Issa, Y. M., Ibrahim, H., & Shehab, O. R. (2012). New copper(II)-selective chemically modified carbon paste electrode based on etioporphyrin I dihydrobromide. J. Electroanal. Chem., 666, 11–18. doi:10.1016/j.jelechem.2011.11.024.
 
27.
Mahajan, R. K., Puri, R. K., Marwaha, A., Kaur, I., & Mahajan, M. P. (2009). Highly selective potentiometric determination of mercury(II) ions using 1-furan-2-yl-4-(4-nitrophenyl)-2-phenyl-5H-imidazole-3-oxide based membrane electrodes. J. Hazard. Mater., 167(1-3), 237–43. doi:10.1016/j.jhazmat.2008.12.107.
 
28.
Rounaghi, G., Zadeh Kakhki, R. M., & Sadeghian, H. (2011). A new cerium (III) ion selective electrode based on 2,9-dihydroxy-1,10-diphenoxy-4,7-dithia decane, a novel synthetic ligand. Electrochim. Acta, 56(27), 9756–9761. doi:10.1016/j.electacta.2011.08.015.
 
29.
Cuartero, M., Ortuño, J. A., García, M. S., Sánchez, G., Más-Montoya, M., & Curiel, D. (2011). Benzodipyrrole derivates as new ionophores for anion-selective electrodes: improving potentiometric selectivity towards divalent anions. Talanta, 85(4), 1876–81. doi:10.1016/j.talanta.2011.07.027.
 
30.
Buck, R. P., & Lindneri, E. R. N. (1994). COMMISSION ON ELECTROANALYTICAL CHEMISTRY * RECOMENDATIONS FOR NOMENCLATURE OF ION-SELECTIVE ELECTRODES ion-selective electrodes ( IUPAC. Pure Appl. Chem., 66(12), 2527–2536.
 
31.
Mousavi, M. ., Sahari, S., Alizadeh, N., & Shamsipur, M. (2000). Lead ion-selective membrane electrode based on 1,10-dibenzyl-1,10-diaza-18-crown-6. Anal. Chim. Acta, 414(1-2), 189–194. doi:10.1016/S0003-2670(00)00818-7.
 
32.
Islamnezhad, A., & Mahmoodi, N. (2011). Potentiometric Cu2+-selective electrode with subnanomolar detection limit. Desalination, 271(1-3), 157–162. doi:10.1016/j.desal.2010.12.020.
 
33.
Fakhari, A. R., Ganjali, M. R., & Shamsipur, M. (1997). PVC-Based Hexathia-18-crown-6-tetraone Sensor for Mercury(II) Ions. Anal. Chem., 69(18), 3693–3696. doi:10.1021/ac970133b.
 
34.
Gehrig, P., Morf, W. E., Welti, M., Pretsch, E., & Simon, W. (1990). Catalysis of Ion Transfer by Tetraphenylborates in Neutral Carrier-Based Ion-Selective Electrodes. Helv. Chim. Acta, 73(1), 203–212. doi:10.1002/hlca.19900730124.
 
35.
Schaller, U., Bakker, E., Spichiger, U. E., & Pretsch, E. (1994). Ionic additives for ion-selective electrodes based on electrically charged carriers. Anal. Chem., 66(3), 391–398. doi:10.1021/ac00075a013.
 
eISSN:1306-3057