The Removal of Cd and Cu from Aqueous Solution Using Sorbents Siirt Peanut Shells Immobilized on Amberlite XAD-4
More details
Hide details
Faculty of Science and Art, Department of Chemistry, Siirt University, TURKEY
Online publication date: 2017-11-18
Publication date: 2017-11-18
Eurasian J Anal Chem 2018;13(1):em02
In this study, sorbents as Siirt peanut shell with Amberlite XAD-4 immobilized on polymers of Cd (II) and Cu(II) ions were investigated conditions of enrichment by solid phase extraction method. The effect of the recovery yield of the ambient pH, eluent type and concentration, solution flow rate, the effect of solution volume, salt effect, column repeatability, examined the application of certified reference material and environmental samples. Improved method has provided 60 times enrichment for Cu and Cd. Under optimum conditions, Cu and Cd recovery yields were found to be Cu 98.43 ± 3.76 and Cd 98.76 ± 4.11 for the 95% confidence level. Besides, the relative standard deviation of Cu and Cd were determined to be 6.51 and 7.11 % for 3 repeat experiments.
Shiva, D., Abkenar, S. D., Hosseini, M., & Jamali, M. R. (2010). Speciation of chromium in water samples with homogeneous liquid-liquid extraction and determination by flame atomic absorption spectrometry. Bulletin of the Korean Chemical Society, 31(10), 2813–2818.
Ahmad, A. Siddique, J. A., Laskar, M. A., Kumar, R., Mohd-Setapar, S. H., Khaton, A., & Shiekh, R. A. (2015). New generation Amberlite XAD resin for the removal of metal ions: A review. Journal of Environmental Sciences (China), 31, 104–123. doi:10.1016/j.jes.2014.12.008.
Islam, A., Ahmad, A., & Laskar, M. A. (2012). Preparation, Characterization of a Novel Chelating Resin Functionalized with o -Hydroxybenzamide and Its Application for Preconcentration of Trace Metal Ions. Clean-Soil,Air,Water, 40(1), 54–65.
Ahmad, A. Khatoon, A., Laskar, M. A., Islam, A., Mohammad, A. W., & Yong, N. L. (2013). Use of 2-hydroxy-3-methoxybenzaldehyde functionalized amberlite xad-16 for preconcentration and determination of trace metal ions by flame atomic absorption spectrometry. Der Pharma Chemica, 5(1), 12–23.
Alan, M., Kara, D. & Fisher, A. (2007). Preconcentration of Heavy Metals and Matrix Elimination using Silica Gel Chemically Modified with 2,3-Dihydroxybenzaldehyde. Separation Science and Technology, 42(4), 879–895. Available at
Bermejo-Barrera, P., Nancy, M. A., Cristina, D. L., & Adela, B. B. (2003). Use of Amberlite XAD-2 loaded with 1-(2-pyridylazo)-2-naphthol as a preconcentration system for river water prior to determination of Cu 2+, Cd2+ and Pb2+ by flame atomic absorption spectroscopy. Mikrochimica Acta, 142(1–2), 101–108.
Chen, S., Liu, C., Yang, M., Lu, D., Zhu, L., & Wang, Z. (2009). Solid-phase extraction of Cu, Co and Pb on oxidized single-walled carbon nanotubes and their determination by inductively coupled plasma mass spectrometry. Journal of Hazardous Materials, 170(1), 247–251.
Erdoğan, N. (2005). Birlikte Çöktürme İle Eser Düzeydeki Bazı Metal İyonlarının Zenginleştirilmesi Ve AAS İle Tayinleri. Erciyes Üniversitesi, Turkey.
Feist, B., & Mikula, B. (2014). Preconcentration of some metal ions with lanthanum-8-hydroxyquinoline co-precipitation system. Food Chemistry, 147, 225–229. doi:10.1016/j.foodchem.2013.09.149.
Ghaedi, M., Karami, B., Ehsani, Sh., Marahel, F., & Soylak, M. (2009). Preconcentration-separation of Co2+, Ni2+, Cu2+ and Cd2+ in real samples by solid phase extraction of a calix[4] resorcinarene modified Amberlite XAD-16 resin. Journal of Hazardous Materials, 172(2–3), 802–808.
Gil, R. A., Cerutti, S., Gásquez, J. A., Olsina, R. A., & Martinez, L. D. (2006). Preconcentration and speciation of chromium in drinking water samples by coupling of on-line sorption on activated carbon to ETAAS determination. Talanta, 68(4), 1065–1070.
Islam, A., Ahmad, A., & Laskar, M. A. (2015). Flame Atomic Absorption Spectrometric Determination of Trace Metal Ions in Environmental and Biological Samples AfterPreconcentration on a Newly Developed Amberlite XAD-16 Chelating Resin Containing p-Aminobenzene Sulfonic Acid. Journal of AOAC International, 98(1), 165–175.
Islam, A., Ahmad, A., & Laskar, M. A. (2012). Characterization of a Chelating Resin Functionalized via Azo Spacer and Its Analytical Applicability for the Determination of Trace Metal Ions in Real Matrices. Journal of Applied Polymer Science, 123, 3448–3458.
Islam, A., Laskar, M. A., & Ahmad, A. (2013). Preconcentration of metal ions through chelation on a synthesized resin containing O , O donor atoms for quantitative analysis of environmental and biological samples. Environmental Monitoring and Assessment, 185(3), 2691–2704.
Kara, D., Fisher, A., & Hill, S. J. (2009). Determination of trace heavy metals in soil and sediments by atomic spectrometry following preconcentration with Schiff bases on Amberlite XAD-4. Journal of Hazardous Materials, 165(1–3), 1165–1169.
Karadaş, C., & Kara, D. (2013). On-line preconcentration and determination of trace elements in waters and reference cereal materials by flow injection - FAAS using newly synthesized 8-hydroxy-2-quinoline carboxaldehyde functionalized Amberlite XAD-4. Journal of Food Composition and Analysis, 32(1), 90–98.
Martins, A. O., Luiz da Silva, E., Laranjeira, M. C. M., & de Fávere, V. T. (2005). Application of chitosan functionalized with 8-hydroxyquinoline: Determination of lead by flow injection flame atomic absorption spectrometry. Microchimica Acta, 150(1), 27–33.
Nazlı Dinçer Kaya, F., Atakol, O., & Doğan, S. (2014). Katı Faz Ekstraksiyonu ile Bakır ve Nikelin Önderiştirilmesinde ONNO ve ONO Tipi Schiff Bazlarının Karşılaştırılması. SDÜ Fen Dergisi, 9(1), 176–185.
Özdemir, S., Okumuş, V., Kılınç, E., Bilgetekin, H., Dündar, A., & Ziyadanoğulları, B. (2012). Pleurotus eryngii immobilized Amberlite XAD-16 as a solid-phase biosorbent for preconcentrations of Cd2 and Co2 and their determination by ICP-OES. Talanta, 99, 502–506.
Saygi, K. O., Tuzen, M., Soylak, M., & Elci, L. (2008). Chromium speciation by solid phase extraction on Dowex M 4195 chelating resin and determination by atomic absorption spectrometry. Journal of Hazardous Materials, 153(3), 1009–1014.
Tejero, M. A., Ramirez, E., Fite, C., Tejero, J., & Cunill, F. (2016). Esterification of levulinic acid with butanol over ion exchange resins. Applied Catalysis A: General, 517, 56–66. doi:10.1016/j.apcata.2016.02.032.
Wan Ngah, W. S., & Hanafiah, M. A. K. M. (2008). Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: A review. Bioresource Technology, 99(10), 3935–3948.