0.60
CiteScore
0.186
SJR
0.447
SNIP
 
CC-BY 4.0
 
 

Tin Electrodeposition from Sulfuric Acid Solution Containing Nigella Sativa Essential Oil Added

Benabida Abdelillah 1  ,  
 
1
Ibn Tofail University, MOROCCO
Eurasian J Anal Chem 2017;12(4):429–442
Online publish date: 2017-01-05
Publish date: 2017-01-05
KEYWORDS:
TOPICS:
ABSTRACT:
Experimental investigations have been performed, using cyclic and linear sweep Voltammetry, to determine the effects of Nigella sativa essential oil additive (NS) on the electrodeposition of tin on mild steel in acid sulfuric solution. The experiments were performed under different plating time, different current densities, pH and temperature conditions. Tin electrodeposition on mild steel was performed using a DC - supply at denoted operating parameters. The presence of the NS additive caused an increase of the activation energy and of the overvoltage of the reduction of hydrogen and stannous ions. The surface of the plated steel was examined using Scanning electron microscope. Different surface characteristics were obtained depending upon the presence or free-additive. The electrodeposition rate of the plated surface was also determined by a gravimetric technique. The quality of the electro-deposition of tin, in the presence of Nigella sativa, was good as indicated by the microstructural morphology of the plated surface except for the few porosities demonstrated.
CORRESPONDING AUTHOR:
Benabida Abdelillah   
Laboratory of materials, electrochemistry and environment, Faculty of Science, Ibn Tofail University, PB 133-14050 Kénitra,Morocco
 
REFERENCES:
1. Sabitha, R., Pushpavanam, M., Mahesh Sujatha, M. & Vasudevan, T. (1996). Electrodeposition of tin from tartrate solutions. Trans. Met. Finish. Ass, 5, 267.
2. Sheppard, K. G. (1996). Abstracts of the 190-th Meeting of the Electrochemical Society. The Electrochemical Society Pennington, NJ, 306 - 395.
3. Vitkova, S. & Young Yang, B. (1994). An electrochemical study on Zn− Sn-alloy-coated steel sheets deposited by vacuum evaporation. Part I. Surf. Coating Tech., 64, 99.
4. Strafford, K. N. & Reed, A. (1984). Coatings reduce the fouling of microfiltration membranes. Coat. and Surf. Treat. for Corr. and Wear Resist, 74.
5. Smirnov, M. I., K.M, T. & Popov, A. N. (1995). Effect of organic surfactants on the kinetics of electrodeposition of tin and tin-lead alloy from methanesulfonic electrolyte. Russ. J. Electrochem, 31, 498.
6. Stirrup, B. N. & Hampson, N. A. (1997). Anodic passivation of tin in buffered phosphate electrolyte. J. Electroanal. Chem., 5, 429.
7. Chen, Y. H., Wang, Y. Y. & Wan, C. C. (2007). Microstructural characteristics of immersion tin coatings on copper circuitries in circuit boards. Surf. Coat. Technol, 202, 417.
8. Low, C. T. J. & Walsh, F. C. (2008). The stability of an acidic tin methanesulfonate electrolyte in the presence of a hydroquinone antioxidant. Electrochim. Acta, 53, 16.
9. Park, Y. W., Sankara Narayanan, T. S. N. & Lee, K. Y. (2007). Effect of temperature on the fretting corrosion of tin plated copper alloy contacts. Wear, 262, 320.
10. Schlesinger, M. & Paunovic, M. (2011). Modern electroplating, 5th Ed., John Wiley & Sons.
11. Loto, C. A. (1993) Effect of sugar cane and cassava juices as addition agents in the electrodeposition of zinc from acid based solution. Discov. Innovat., 5, 253.
12. Loto, C. A., Olefjord, I. & Mattson, H. (1991). The Effect of Mango Bark and Leaf Extract Solution Additives on the Corrosion Inhibition of Mild Steel in Dilute Sulphuric Acid-Part 1. Corros. Prevent. Contr., 39, 885.
13. Loto, C. A., Olefjord, I. & Mattson, H. (1992). Effect of inhibitors and admixed chloride on electrochemical corrosion behavior of mild steel reinforcement in concrete in seawater. Corros. Prevent. Contr., 39, 149.
14. Tripathy, B. C., Singh, P., Muir, D. M. & Das, S. C. (2001). Effect of organic extractants on the electrocrystallization of nickel from aqueous sulphate solutions. J. Appl. Electrochem., 31, 301.
15. Benabida, A., Galai, M., Zarrouk, A. & Cherkaoui, M. (2014). Effects of linseed oil additive on the electroplating of tin on mild steel. Der Pharma Chemica, 6, 285-293.
16. Cheikh-Rouhou, S., Besbes, S., Hentati, B., Blecker, C., Deroanne, C., Attia. H. (2007). Food Chem, 101, 673–681.
17. Gharby, S., Harhar, H., Guillaume, D., Roudani, A., Boulbaroud, S., Ibrahimi, M., Ahmad, M., Sultana, S., Ben Hadda, T., Chafchaouni-Moussaoui, I. & Charrouf, Z. (2013). Chemical investigation of Nigella sativa L. seed oil produced in Morocco. Journal of the Saudi Society of Agricultural Sciences, 14(2), 172-177.
18. Sherif, E. M. & Park, S.-M. (2006). Effects of 2-amino-5-ethylthio-1, 3, 4-thiadiazole on copper corrosion as a corrosion inhibitor in aerated acidic pickling solutions. Electrochim. Acta, 51, 6556.
19. Sherif, E. M. & Park, S.-M. (2006). Inhibition of copper corrosion in acidic pickling solutions by N-phenyl-1, 4-phenylenediamine. Electrochim. Acta, 51, 4665.
20. Sherif, el-S. M., Erasmus, R. M., Comins, J. D. (2007). Corrosion of copper in aerated acidic pickling solutions and its inhibition by 3-amino-1, 2, 4-triazole-5-thiol. J. Colloid & Inter. Sci., 306, 96.
21. Sherif, el-S. M. (2012). [PDF] Electrochemical and gravimetric study on the corrosion and corrosion inhibition of pure copper in sodium chloride solutions by two azole derivatives. Int. J. Electrochem. Sci., 7, 1482–1495.
22. Bakkali, S., Touir, R., Cherkaoui, M. & EbnTouhami, M. (2015). Influence of S-dodecylmercaptobenzimidazole as organic additive on electrodeposition of tin. Surface and Coatings Technology, 261, 337-343.
23. Soto, F. & Crousier, J. (1998). Electrocristallisation de revêtements zinc-manganèse: comportement à la corrosion, s. n. theses.fr.
24. Abd El Rehim, S. S., et al. (1998). Anomalous electrodeposition of zinc-nickel alloys from aqueous citrate baths. J. Metall, 52, 304-308.
25. Nuñez, M. (2005). Metal electrodeposition, Nova Publishers.
26. Anik, T., Ebn Touhami., M., Himm, K., Schireen, S., Belkhmima, R. A., Abouchane, M. & Cissé, M. (2012). Influence of pH solution on electroless copper plating using sodium hypophosphite as reducing agent. Int. J. Electrochem. Sci, 7, 2009–2018.
27. Yu, J., Cao, H., Chen, Y., Kang, L. & Yang, H. (1999). A new approach to the estimation of electrocrystallization parameters. J. Electroanal.Chem., 69, 474.
28. Chassaing, E. & Wiart, R. (1992). Electrocrystallization mechanism of Z- Ni alloys in chloride electrolytes. Electrochim. Acta., 37, 545.
29. Vetter, K. J. (1961). Experimentelle Ergebnisse der elektrochemischen Kinetik. Elektrochemische Kinetik. Springer Verlag, 698.
30. Winand, R. (1994). Electrodeposition of Metals and Alloys---New Results and Perspectives. Electrochemica Acta, 39, 1091-1105.
31. Wen, S. & Szpunar, J. A. (2005). Nucleation and growth of tin on low carbon steel. Nucleation and growth of tin on low carbon steel. Electrochimica Acta, 50, 2393-2399.
32. Miles, M., Kissel, G., Lu, P. & Srinivasan, S. (1976). Effect of temperature on electrode kinetic parameters for hydrogen and oxygen evolution reactions on nickel electrodes in alkaline solutions. Journal of the Electrochemical Society, 123, 332-336.
33. Pasquale, M. A., Gassa, L. M. & Arvia, A. J. (2008). Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives. Electrochimica Acta, 53, 5891-5904.
34. Abd El Rehim, S. S., Ibrahim, M. A. M., Dankeria, M. M. & Emad, M. (2002). Electrodeposition of amorphous cobalt-manganese alloys on to steel from gluconate baths. Trans. IMF, 80, 105.
Copy url
Share
 
 
eISSN:1306-3057