# Investigating The Function of Algae as A Bioindicator for Water Quality Assessment

# Raju Potharaju<sup>1\*</sup> and Dr K. L. V Varaprasada Rao<sup>2</sup> and M. Aruna<sup>3</sup>

<sup>1\*</sup>Department of Botany, C.K.M Govt Arts and Science College, Warangal, Telangana, 506006, India.

2 Department of Botany, C.K.M Govt Arts and Science College, Warangal, Telangana, 506006, India.

3 Department of Botany, Hydrobiology and Algal Biotechnology Laboratory, Telangana University, Dichpally, Nizamabad, Telangana, 503322, India.

\*Corresponding Author: Raju Potharaju \*Email: rajuvarmabotany@gmail.com

#### **ABSTRACT**

**Objectives:** To explore the algal floral diversity and its role in determining water quality.

**Methods:** In 2024, algae and water samples were collected every month. Formalin at 2 to 3% was used to keep unicellular algae, whereas formalin at 4% was used to keep macroalgae. The Canon advanced digital camera was used to capture microphotographs of algae. We utilised the Palmer pollution index to find out how clean the water was.

**Results:** The research found 201 algae species spread throughout 57 genera, 42 families, 25 orders, 10 classes, and 7 divisions. The overall score for the Lake's Algal Genus Pollution Index. It was determined that Lake has a possible absence of organic pollutants.

Conclusion: We firmly promote for the protection and management of algae species to ensure a sustainable stock of algal-derived products in the future. It was shown that the water quality of Lake was influenced by human activity and must be regulated.

Key words: Pollution Index of Lake, water quality, anthropogenic activities, algal floral diversity

### Introduction

Algae are a wide category of basic, photosynthetic creatures that may be unicellular or multicellular. They have a very basic body termed a thallus, which cannot be distinguished from genuine roots, stems, and leaves and lacks circulatory tissues. They are quite different in terms of size, shape, structure, colour, behaviour, and environment. Because of their immense biological diversity, algae may be found in a wide range of ecosystems, including oceans, rivers, lakes, ponds, and streams. (Lowe, Ri., Pan, Y., 2006). They may be found anywhere from the depths of the ocean to the world's highest summits. Linnaeus originally used the name "Algae" in 1753. Algae are an essential food source for aquatic organisms and contribute significantly to the aquatic food chain or food web.

They are an excellent source of natural human nutrition. (Reynolds 2020) Microalgae are an excellent source of biofuel, with better productivity than conventional crops (Khatoon and Pal, 2015). Many important antibiotics and medications are derived from these species. Pharmaceutical firms employ them to make medications that are used to treat illnesses such as cancer, acquired immune deficiency syndrome (AIDS), arthritis, respiratory ailments, and infections caused by viruses, bacteria, and fungus (V, Vadlapudi, 2012). Algae help to purify water by removing nutrients and contaminants. (Rojo, 2004). Because of their quick reactivity to pollution, algae are thought to be excellent bioindicators of water quality.

Algae are significant biological organisms for water filtration because they absorb organic and inorganic contaminants, heavy metals, and radioactive materials. (Rawson, D.S., 2020, Stockner 2000). Microalgae are bioindicators of eutrophication and may be used to monitor water quality. The presence of green algae and diatoms indicates oligotrophic conditions, but the prevalence of blue green algae indicates eutrophic conditions in water bodies. Due to the enormous relevance and contribution of algae, an endeavour was undertaken to record the existence of important algal species. The goals of this study were to undertake thorough research on the collection, identification, and categorisation of algal flora in order to assess phycological variety and its function in determining water quality in the study region for the first time. This study is noteworthy since it is a current and new work. The study should be of interest to readers in the fields of botany, ecology, conservation biology, agriculture, and environmental sciences, etc.

## Materials and methods

### Study site-Himayathsagar Lake

Himayathsagar Lake Coordinates 17°18′N 78°21′E. The construction of reservoirs on the Esi, a tributary of the Musi River, was completed in 1927, with the intention of providing a drinking water source for Hyderabad and protecting the city from floods, which Hyderabad suffered in 1908. It was built during the reign of the last Nizam of Hyderabad, The Himayat Sagar dam and Osman Sagar reservoirs provided continuous water supply to the twin cities of Hyderabad and Secunderabad until recently. Due to population growth, they are not sufficient to meet the cities' water supply-demand. Himayat Sagar is an artificial lake about 20 kilometres (12 mi) from Hyderabad in the Ranga Reddy district of Telangana, India. It lies parallel to a larger artificial lake called Osman Sagar. The storage capacity of the reservoir is 2.9 tmc ft.

## Sampling sites

For present study, algal and water samples were collected from five randomly selected sampling Sites

#### Sampling of algae

Algae was collected on a regular monthly basis from January to December 2024. Epiphytic algae and desmid flora were gathered using a pipette. Filamentous algae species were obtained using forceps. Diatoms were collected using a tooth brush, whereas macroalgae were picked up by hand. The gathered algae samples were placed in bottles and tagged.

### Preservation of algae

Unicellular algae were preserved in 2 to 3% formalin while macro algae were kept in 4% formalin (Mason, 1967).

## Laboratory studies and identification of algae

The algal samples were sent to the Hydrobiology, Algal biotechnological laboratory at C.K.M. Government Arts and Science College for microphotography. Microphotographs of algae species were captured using a camera affixed to the microscope (MT5300H-Japan). The algal species specimens were identified using authoritative literature to the species or variety level (Smith 1950, Prescott 1962).

# Analysis of algae

The collected material was assessed on the basis of morphological, cytological and reproductive characters during microscopic examination. After detail analysis, algae were documented and tabulated for evaluation of algal biodiversity from the study area.

## Palmer pollution index

Palmer pollution index was used to evaluate water quality

## Results

The current research identified 201 algae species among 57 genera, 42 families, 25 orders, 10 classes, and 7 divisions from the study region in 2018. The highest number of families (18) was supplied by the division Bacillariophyta, followed by Chlorophyta with 14 families and Cyanophyta with 5 families. Euglenophyta supplied two families, but Glucophyta and Dinophyta each gave one family. Table 1. The Bacillariophyta exhibited dominance with a frequency of 47%, followed by Chlorophyta at 38% and Cyanophyta at 19%. The minor divisions Euglenophyta, Charophyta, and Dinophyta had low representation, with frequencies of 2%, 1.5%, and 1%, respectively (Fig. 2).

The Naviculaceae and Fragillariaceae families had the greatest species diversity, whilst Glucocystaceae displayed the least (Table 1). The highest number of detected species was 95, mostly from Bacillariophyta, followed by 76 species from Chlorophyta. The minimum number of species was represented by Glaucophyta and Dinophyta, each including one species. Bacillariophyta produced the highest number of genera (25), followed by Chlorophyta with 21 genera and Cyanophyta with 6 genera. Euglenophyta was represented by three genera, but the other divisions were not specified.

Each was documented with one genus. The division with the highest number of orders was Chlorophyta, contributing 11 orders, followed by Bacillariophyta with 6 orders and Cyanophyta with 4 orders, while the other divisions each contributed 1 order (Fig. 3). The predominant genus was Navicula, including 14 species, followed by Spirogyra and Cymbella, each with 11 species. The least number of species was supplied by Troschia and Lyngbya (Fig. 4 and Table 1). The division Bacillariophyta exhibited dominance with a frequency of 47%, followed by Chlorophyta at 38% and Cyanophyta at 19%, respectively. The minor divisions Euglenophyta, Charophyta, and Dinophyta had low representation, with frequencies of 2%, 1.5%, and 1%, respectively. Figure 5.

# Evaluation of organic pollution by Palmer's algal genus

The contamination of surface water has emerged as a significant environmental issue. Organic pollution in water bodies results in eutrophication, which subsequently accelerates the growth of specific algal species in these environments. (Thomann, R.V., 2009). Algae serve as a natural indicator of environmental conditions due to their ability to form blooms in water bodies and exhibit vigorous growth. Numerous studies conducted by different authors have demonstrated a significant relationship between algal species and both polluted and unpolluted water. (Schindler, D.W., 2014)

Various factors such as the mixing of water masses, light availability, temperature, salinity, and nutrient levels exert influence. Bioindicator organisms serve as valuable tools for detecting the impacts of pollutants within aquatic ecosystems. Various environmental factors influence the presence and spread of algae. The mass of cyanobacteria is affected by the concentration of hydrogen ions (pH), with subsequent influences from temperature, light, soil type, and the availability of nutrients. The mass can be quantified through the frequency and intensity of the biotic community as a result of eutrophication. Numerous investigations into algal species have validated their significance in evaluating pollution levels in aquatic environments.

Kolkwitz and Marsson (1950) divided bodies of water into five zones based on how polluted they were and suggested using aquatic species as bioindicators to check the water quality.

Werner (1977), Watanabe, T(2016) suggested nine separate areas based on how much organic contamination there was in water bodies. Coprozoic, Polysaprobic, Mesosaprobic, Oligosaprobic, and Katharobic were the zones that Werner suggested. It was observed that each zone was distinct based on its physical, chemical, and biological traits. He named the indicator species in these areas that changed how they grew when contaminants were present in water bodies. The polysaprobic zone has no algae at all, save for blue-green algae Spirulina and green algae Euglena viridis. In the alpha-Mesozoic zone, blue-green algae were the most common kind of algae, whereas in the Beta-Mesozoic zone, diatoms and green algae were the most common. We only discovered Dinophyta and Charophyta in oligosaprobic zones. Palmer (1969) came up with the idea of a pollution index based on the types and numbers of algae seen in water bodies. This pollution index is a good way to check the water quality for high or low levels of organic pollutants (Table 2). We found pollution-tolerant algae in all the research area's locations and gave each algal species a pollution index score. A pollution index value of 20 or above means that there is a lot of organic contamination in the water. A score between 15 and 19 indicates that there is likely organic contamination. A pollution index score of 10 to 14 means that there is considerable organic pollution, whereas a score of 0 to 10 means that there is no organic pollution in the water. We employed algae genera to find out how clean the water was in the freshwater bodies we studied. The overall score of the algal genus pollution index for the lake was 14, 9, 10, 18, and 25, respectively. Table 3 shows that Lake probably contains organic contamination.

## Table-1

Algal flora explored from freshwater lake of the study area

Divisions, Class, Order, Family, Genus and Species name

Cyanophyta Cyanophyceae Order: Chroococcales

## Family: Chroococcaceae

1.Chroococcus turgidus (Kutzing) Naegeli

2. Chrococcus limneticus Lemmermann

Family: Microcystacae 3. Gleocapsa punctate Nageli

4. Gleocapsa bituminosa Kutzing

Order: Nostocales Family: Nostocaceae

5. Nostoc muscorum C.A. Agardh

Order: Oscillatoriales Family: Oscillatoriaceae 6. Lyngbya birgei G.M. Smith

7. Lyngbya martensiana Meneghini ex Gomont

8.Lyngbya majuscule Harvey ex Gomont

9. Oscillatoria tenuis C.A. Agardh

10. Oscillatoria limosa C.A. Agardh

11.0scillatoria princeps Vaucher

12.0scillatoria sancta (Kutzing) Gomont

13.Oscillatoria fracta G.W.F.Carlson

14.0scillatoria acuta Bruhl

15.0scillatoria chilkensis Biswas

16.0scillatoria obscura Bruhl &Biswas

17.0scillatoria curviceps C.A. Agardh

18. Oscillatoria anguina Bory ex Gomont

Order: Synechococcales Family: Merismopediaceae

19. Merismopedia glauca (Ehrenberg) Kutzin

<u>Chlorophyta Chlorophyceae Order: Chlorococcales</u>

Family: Oocystaceae

20. Ankistrodesmus falcatus var. radiates (Chod) Lemmermann

**Order: Chlamydomonadales** 

Family:Volvocaceae

21. Volvox aureus Ehrenberg

22.Pandorina morum Bory

Family: Chlorococcaceae

23. Schroederia setigera (Schroeder)Lemmermann

Order: Sphaeropleales Family: Scenedesmaceae

24. Scenedesmus quadricauda (Turpin) Brebisson

25. Scenedesmus opoliensis Richter

26. Scenedesmus protuberans Fritsch and Rich

27. Scenedesmus longus Meyen

28. Scenedesmus dimorphus (Turpin) Kutzing

29. Scenedesmus carinatus (Lemmermann) Chodat

30. Scenedesmus communis E. Hegewald

31. Scenedesmus abundans var.longicada G.M Smith

32. Scenedesmus quadricauda var. maxima West & GS West

33. Scenedesmus abundans (Kirchner) Chodat

34. Tetraedron regulare Kutzing

35.Tetraedron caudatum (Corda) Hansgirg

36. Tetradron trigonum var. minus Reinch

37. Troschia aspera Reinsch

38. Coelastrum microporum Nacgeli

39.Coelosphaerium kuetzinginum

# Family: Hydrodictyaceae

40.Pediastrum duplex Meyen

41. Pediastrum duplex var. gracillimum West & GS West

42. Pediastrum simplex var echnulatum Wittrock

43. Pediastrum biwae var. ovatum (Ehrenberg) Tiffany

44.Pediastrum simplex var.duodenarium (Bailey) Rabenhorst

45. Pediastrum boryanum var. longicorne Raciborski

Order: Oedogoniales Family: Oedogoniaceae

46.0edogonium macrandrium Wittrock

47.0edogonium cardiacum (Hassall) Wittrock

48.0edogonium majus (Hansgirg) Tiffany

Order: Tetrasporales Family: Sphaerocystidaceae

49.Sphaerocystis schroeteri R.Chodat

Order: Microsporales Family: Microsporaceae

50. Microspora quadrata Hazen

51.Microspora willeana Lagerheim

52.Microspora tumidula Hazen

Order: Chetophorales Family: Chaetophoraceae

53.Draparnaldia plumose (Vaucher) C.A. Agardh

54.Chaetophora lobata F.Schrank

55. Chaetophora elegans (Roth) Agardh Ulvophyceae

Order: Ulvotrichales Family: Ulotrichaceae

56.Ulothrix gemilata Kutzing

57. Ulothrix zonata (Weber & Mohr) Kutzing

58. Ulothrix aqualis Kutzing Order: Cladophorales Family: Cladophoraceae

59. Cladophora glomerata (Linnaeus) Kutzing

60.Cladophora oligoclona Kutzing Zygnematophyceae

# Order: Zygnematales

Family: Zygnemataceae

61. Spirogyra communis (Hassall) Kutzing

62.Spirogyra biformis C.C.Jao

63.Spirogyra maxima Link in C.G.Nees

64. Spirogyra neglecta (Hassall) Kutzing

65.Spirogyra subsalsa Link in C.G.Nees

66.Spirogyra tetrapla Transeau

67. Spirogyra elongata (Vaucher) Kutzing

68. Spirogyra fluviatilis Hilse

69. Spirogyra punctiformis Trascan

70. Spirogyra rectuangularis Transeau

71. Spirogyra catenaeformis (Hassall) Kutzing

72.Zygnema tenue Kutzing

73.Zygnema sterile Transeau

74.Zygnema insigni (Hassall)

75. Zygnema aplanosporum Stancheva, J.D. Hall & Sheath

76. Mougetia micropora Taft

77. Mougetia viridis (Kutzing) Wittrock

# Order: Desmidiales Family: Desmidiaceae

78.Cosmarium formosulum Hoffman

79.Cosmarium botrytis Meneghini

80.Cosmarium speciosum Lundell

81.Cosmarium granatum Brebisson

82.Cosmarium nitidulum Denotaris

83.Cosmarium subtumidum Nordstedt

84.Staurastrum rzoskae Meyen ex Ralfs

# Family:Closteriaceae

85.Closterium acutum (Lyngbye) Brebisson

86.Closterium parvulum Naegeli

87. Closterium leibleinii Kutzing

88.Closterium lanceolatum Kutzing

89.Closterium intermedium Ralfs

90.Closterium littorale Gay

91.Closterium lunula (Mueller) Nitzch

92.Closterium pseudolunula Borge

93. Closterium acerosum var. elongatum Brebisson

94.Closterium striolatum Ehrenberg

# Trebouxiophyceae Order: Chlorellales Family: Chlorallaceae

95.Chlorella conductrix Brandt

Charophyta

Charophyceae Order: Charales

Family: Characeae

96.Chara coralina Klein ex C.L.Willdenow

97.Chara globular Thuiller

98.Chara vulgaris Linnaeus

Bacillariophyta Bacillariophyceae Order: Bacillariales

# Family:Anomoeneidaceae

99. Anomoeoneis vitrea Pfitzer

100. Anomocoenis exilis (Kutzing) Cleve

101. Anomoconies serianus (Brebisson) Cleve

Family:Catenulaceae

102. Amphora holsatica Hustedt

Family: Achnanthidiaceae

103. Achanthes microcephala (Kutzing) Cleve

Family:Cocconeidaceae

104.Cocconeis plancetula Ehrenberg

Family: Bacillariaceae

105.Denticula tennis Kutzing

106.Nitzchia palea (Kutzing) Wm. Smith

107. Nitzschia sublinearis Hustedt

108. Nitzchia acicularis (Kutzing) Wm. Smith

109.Nitzchia hungarica Grunow

110.Nitzchia denticula Grunow

111. Nitzchia palea var. tenuirostris Grunow

Order: Fragilariaales Family:Fragilariaceae

112.Diatom vulgare Bory

113.Diatoma anceps (Ehrenberg) Kirchner 114.Fragillaria viresecens Ralfs

115.Fragillaria pinnota Ehrenberg

116.Fragillaria capucina Desmazieres

117.Fragilaria vaucheriae (Kutzing) J.P.Peterson

118.Fragillaria intermedia (Grunow) Grunow

119.Fragillaria crotonensis var.prolongata Grunow

120. Stauroneis phoenicentron (Nitzsch) Ehrenberg

121.Stauroneis acuta Wm.Smith

122. Stauroneis phoenicentrum var. amphilepta (Ehrenberg) Cleve

123. Stauroneis anceps var. birostris (Ehrenberg) Cleve

124.Synedra dorsiventralis Mueller

125. Synedra ulna (Nitzsch) Ehrenberg

126.Synedra acus Kutzing

127.Synedra parasitica (Wm.Smith) Hustedt

128. Synedra amphicephala Kutzing

129.Synedra affinis Kuetz

130.Synedra crystalina (C.A.Agardh) Kutzing

# Order:Naviculales

# Family:Naviculaceae

131.Caloneis bacillum (Grunow) Mereschkowsky

132.Gyrosigma acuminatum (Kutzing) Cleve

133.Gyrosigma wormleyi (Sullivant) Boyer

134.Gyrosigma Kuetzingii (Grunow) Cleve

135.Gyrosigma scalproides Rabenhorst

136.Navicula tuscula (Ehrenberg) Grunow

137. Navicula gracilis Ehrenberg

138.Navicula protracta (Grunow) Cleve

139. Navicula exigua (Gregory) Muller

140. Navicula veneta Kutzing

141.Navicula salinarum Grunow

142. Navicula rhyncocephala Kutzing

143. Navicula radiosa Kutzing

144. Navicula viridula Kutzing

145. Navicula cuspidata Kutzing

146.Navicula grimmei Krasske

147. Navicula dicephala (Ehrenberg) Wm. Smith

148. Navicula reinhardtii (Grunow) Van Heurek

149.Navicula gregaria Donkin

Family: Rhopalodiaceae

150.Rhopalodia gibba (Kutzing) Mueller

151.Rhopalodia gibba var.ventricosa (Kutzing) H.Peragallo & M. Peragallo

152. Epithemia adnata (Kutzing) Brebisson

153. Epithemia argus (Ehrenberg) Kutzing

Family: Pinnulariaceae

154.Pinnularia nobilis Ehrenberg

155.Pinnularia braunii (Grunow) Cleve

156.Pleurosigma angulatum (Quekett) Wm.Smith

157.Pleurosigma salinarum (Grunow) Grunow

Family: Neidiaceae

158. Nedium iridis (Ehrenberg) Pfitzer

159. Nedium dubium (Ehrenberg) Pfitzer

# Family:Sellaphoraceae

160.Sellaphora capitata D.G.Mann& S.M. McDonald

161.Sellaphora pupilla (Kutzing) Meresckowsky

# Family: Amphipleuraceae

162.Frustulia rhomboids (Ehrenberg) DeToni

163.Frustulia viridula (Brebisson) DeToni

### Family: Stauroneidaceae

164.Craticula cuspidata (Kutzing) D.G.Mann

# Order: Surirellales Family:Surirellaceae

166.Cymatopleura solea (Brebisson) Wm.Smith

167.Cymatopleura elliptica f.spiralis (Chase) Boyer

168.Surirella linearis Wm.Smith

169.Surirella saronica Auerswald

170.Surirella didyma Kutzing

171.Surirella splendida (Ehrenberg) Kutzing

172. Surirella linearis var. constricta (Ehrenberg) Grunow

173. Surirella ovata Kutzing

174.Surirella minuta Kutzing

175. Surirella patella Kutzing

# Order: Mastogloiales Family: Mastogloiaceae

176.Mastogloia smithii Tshwait

177. Mastogloia smithii var. amphicephala Grunow

# Order:Cymbellales

# Family:Cymbellaceae

178.Cymbella tumida (Brebisson) Van Heurck

179.Cymbella leptoceros (Ehrenberg) Grunow

180.Cymbella laevis Naegeli

181.Cymbella lanceolata (Brebisson) Van Heurck

182.Cymbella prostrata (Berkeley) Cleve

183.Cymbella turgida Gregory

184.Cymbella acqualis Wm.Smith

185.Cymbella affinis Kutzing

186.Cymbella parva (Wm.Smith) Cleve

187.Cymbella aspera (Ehrenberg) Cleve

188.Cymbella brehmii C.A.Agardh

## Family:Gomphonemataceae

189.Gomphonema ventricosum Gregory

190.Gomphonema constrictum Ehrenberg

191.Gomphonema micropus Kutzing

192.Gomhonema sphaerophorum Ehrenberg

193.Gomhonema angustatum (Kutzing) Grunow

194.Gomhonema parvulum (Kutzing) Grunow

# Euglenophyta Euglenophycaea Order: Euglenales

# Family: Euglenaceae

195. Euglena limnophila Ehrenberg

196.Euglena sociabilis P.A. Dangeard

197. Euglenaformis proxima (Dangeard) M.S. Bennett

Family: Phacaceae

198. Phacus longicauda (Ehrenberg) Dujardin

199. Astasia cylindrical Fromental

# Glaucophyta Glaucophyceae

Order:Glaucocystales Family: Glaucocystaceae

200. Gloescystis ampla Kutzing Dinophyta

Dinophyceae

Order: Phytodiniales Family: Phytodinaceae

201. Cystodinium steinii Transeau

## **Discussion**

The algae represent a fascinating group of plants, characterised by their primitive nature and global distribution, owing to their ability to thrive in a wide range of environmental conditions. Algae serve as the main producers in various aquatic ecosystems because of their capacity for photosynthesis. They are highly significant organisms from ecological, commercial, and medical perspectives. Our study in freshwater bodies revealed a rich diversity of algal species, including three new records: Phacus longicauda, Closterium leibeleinii, and Pediastrum duplex var. gracillimum. Variations in algal composition and diversity were observed in the lake, showing differences at the bottom, middle, and surface layers of water due to the formation of a thermocline in the water body. Diatoms were the predominant group among microalgae, followed by green algae and blue-green algae. Bioindicator organisms reveal the impacts of various pollutants in aquatic ecosystems. Phytoplanktons serve as a dependable means to assess the water quality of wetlands (Crosseti et al., 2008). Freshwater bodies and lakes are defined by the predominant algal group present. We analysed the water bodies in our study area based on algal genus and determined that the lake likely exhibits signs of organic pollution. While the lake indicated a confirmation of low organic pollution. Species of Chlorophyta such as Chlamydomonas and Euglena, along with members of Bacillariophyta like Navicula, Synedra, and Gomphonema, as well as blue-green algae like Oscillatoria and Phormidium, thrive in waters that are organically polluted (Palmer, 1969). Anand (2000) examined the ecology of a diatom species and observed their significance as indicators of water quality parameters. The prevalence of green algae and diatoms signifies oligotrophic conditions, whereas the abundance of blue-green algae suggests eutrophic conditions in water bodies. Our findings align with those of Palmer (1969) and Musharaf et al. (2011).

Table 2 Palmer algal genus pollution index

| lab    | ie z Paimer aigai | genu  | s pollution in | aex.  |
|--------|-------------------|-------|----------------|-------|
| S. No. | Genus             | Index | Genus          | Index |
| 1      |                   | 4     | Nitzchia       | 3     |
|        | Ankistrodesmus    |       |                |       |
| 2      |                   | 1     | Scenedesmus    | 4     |
|        | Closterium        |       |                |       |
| 3      |                   | 1     | Syndra         | 2     |
|        | Euglena           |       |                |       |
| 4      |                   | 1     | Pandorina      | 1     |
|        | Gomphonema        |       |                |       |
| 5      |                   | 1     | Oscillatoria   | 5     |
|        | Chlorella         |       |                |       |
| 6      |                   | 3     | Phacus         | 2     |
|        | Navicula          |       |                |       |
| 7      |                   | 5     | Phormidium     | 1     |
|        | Cyclotella        |       |                |       |
| 8      | -                 | 3     | Stigeoclonium  | 2     |
|        | Chlaymydomonas    |       |                |       |

Table 3 Pollution indicating algal genera from water bodies of the study area.

| Algal Genus    | Freshwater Lake |
|----------------|-----------------|
|                |                 |
|                | T               |
| Ankistrodesmus | 4               |
| Closterium     | 1               |
| Euglena        | 1               |
| Gomphonema     | 1               |
| Chlorella      | -               |
| Navicula       | 3               |
| Cyclotella     | _               |
| Chlamydomonas  | _               |
|                |                 |

(i) Scenedesmus





Fig. 1. (a-i) Pollution tolerating genera identified from the freshwater lake of the study area

(h) Ankistrodesmus

(g) Navicula

# Conclusion

The water from the freshwater lake is utilised for household, industrial, and agricultural uses. The present investigation found that the decline is attributable to pollution. Conservation and management of these water bodies are necessary to ensure their long-term availability. Sustainable water usage and management are advocated for the survival of water bodies in the research region. It is proposed that future research include molecular studies of algae as well as phylogeny of representative taxa. The utilisation of algae for biofuel,

bioremediation, therapeutic purposes, human algal diet, and fish flora should be investigated for commercial and industrial uses, as well as the benefits to humanity.

# **Declaration of Competing Interest**

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

# **DISCLAIMER (ARTIFICIAL INTELLIGENCE)**

Author(s) hereby declare that NO generative AI technologies such as Large Language Models (ChatGPT, COPILOT, etc) and text-to-image generators have been used during writing or editing of this manuscript.

#### **ACKNOWLEDGEMENTS**

We are grateful to Prof. Vidyavati, former Vice Chancellor of Kakatiya University, Warangal for her valuable suggestions and constant encouragement.

## REFERENCES

- 1. Anand, V.K., 2000. Ecology of Melosira varians AG. (Bacillariophyceae), J. Env. and Pollut. 7 (4), 299-302
- 2. Crosseti, L. et al., 2008. Structural and functional phytoplanktons responses to nutrient. Impoverishment in mesocosms placed in shallow eutrophic reservoir, Sao Paulo. Brazil. Hydrobio 541, 71–85.
- 3. Khatoon, N., Pal, R., 2015. Microalgae in Biotechnological Application. Plant Biol & Biotech, 27-47.
- 4. Kolkwitz, Marsson, 1950. Okologie der Pflanzichen Saprobien. Ber. Deutsch Bot. Ges 1908 (26), 505-519.
- 5. Lowe, Ri., Pan, Y., 2006. Benthic algal communities as biological monitors. In: Stevenson, R.J., Bothwell, M.L., Lowe, R.L., 1996. Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, London, pp. 705-739.
- 6. Mason, D.J., 1967. Limnology of Monolake. Pub. Zoology Dept. California Univ. California. 83, 1–102.
- 7. Musharaf, K., Farrukh, H., Shahana, M., 2011. A fraction of fresh water Algae of Kalpani stream and adjoining. area of District Mardan, Pakistan. Int. I. Biosci. 145–150
- 8. Palmer, C.M., 1969. Composite rating of algae tolerating organic pollution. Phycol 5, 78–82.
- 9. Presscot, G.W., 1962. Algae of western great lakes area. C. Brown Co., Dusuoue, Iowa, W.M, p. 970.
- 10. Rawson, D.S., 2020. Algal indicators of trophic lake types. Limnology & Oceanography 1, 18-25.
- 11. Reynolds, C.S., Descy, J.-P., 2020. Production, biomass and structure of phytoplankton in large rivers. Archiv ftir Hydrobiologie Supplemente (Large Rivers) 113, 161-187.
- 12. Rojo, C., Cobelas, M.A., Arauzo, M., 2004. An elementary, structural analysis of river phytoplankton. Hydrobiologia 289, 43-55.
- 13. Schindler, D.W., 2014. Eutrophication and recovery in experimental lakes: implications for lake management. Science 184, 897-899.
- 14. Smith, GM (1950). The Fresh-
- 15. Water Algae of United States of America, McGraw Hill, New York, America. Tiffny, LH, and ME, Britton (1971). The algae of Illinois. Hapner p Co 395
- 16. Stockner, J.G., Callieri, C., Cronberg, G., 2000. Picoplankton and other non-bloom forming cyanobacteria in lakes. In: Whitton, B.H., Potts, M. (Eds), Ecology of Cyanobacteria. Their Diversity in Time and Space. Kluwer Academic, Norwell, pp. 195-231
- 17. Thomann, R.V., 2009. Bioaccumulation model of organic chemical distribution in aquatic food chains. Environmental Science and Technology 23, 699-707.
- 18. Vadlapudi, V., 2012. Antioxidant activities of marine algae. A review. Research signpost. 189–203.
- 19. Watanabe, T., Asai, K., Houki, A., 2016. Numerical estimation to organic pollution of flowing water by using the epilithic diatom assemblage index (DAIpo). Science of the Total Environment 55, 209-218.
- 20. Werner, D., 1977. The Biology of diatoms. Botanical monographs. California pres. 13 (498), pp.