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Abstract

This study explores the design and computational evaluation of novel acetaminophen derivatives as potential
inhibitors of carbonic anhydrase II (CA II), an enzyme implicated in various physiological and pathological
processes, including glaucoma, epilepsy, and cancer. Given the limitations and side effects associated with
traditional sulfonamide-based CA inhibitors, there is a pressing need for more selective and safer alternatives.
Utilizing molecular docking techniques, the binding affinities and interaction modes of these derivatives within the
CA II active site were assessed, with compounds A and B exhibiting promising binding energies (-6.67 and -6.47
kcal/mol, respectively) and favorable interactions with key residues such as Zn262, Asn67, and Trp5.
Complementary ADMET profiling via SwissADME predicted satisfactory pharmacokinetic properties, including
solubility, permeability, and drug-likeness, aligning with Lipinski’s rule. The integration of docking scores with
pharmacokinetic predictions underscores the potential of these derivatives as lead candidates for further
experimental validation. This computational framework highlights the feasibility of repurposing acetaminophen
scaffolds for CA Il inhibition, offering a strategic pathway toward the development of selective, efficacious, and safer
CA inhibitors for therapeutic applications. The findings lay the groundwork for subsequent synthesis and in vitro
testing, aiming to contribute to the advancement of targeted treatments with minimized adverse effects.
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1. Introduction

Carbonic anhydrases (CAs) are a group of zinc metalloenzymes, which catalyze the reversible hydration of carbon
dioxide (CO,), and are involved in the pH homeostasis, respiration, production of cerebrospinal fluid as well as
bone resorption [1]. From 15 isoforms of human CAs, the role of CA II is prominent due to its elevated catalytic
efficiency as well as its widespread distribution in the body, which makes it an ideal drug target in the treatment
of glaucoma, epilepsy and cancers [2]. Carbonic anhydrase inhibitors (CAls) have been a focus of interest; the
sulphonamide acetazolamide is commonly used clinically [3]. Nonetheless, side effects such as metabolic acidosis
and hypokalemia may limit their use, which has prompted the development of new selective and safer inhibitors
[4]

Acetaminophen, also known as paracetamol, serves primarily as an analgesic and antipyretic. Recent investigations
have revealed its modest inhibitory effects on carbonic anhydrases (CAs), indicating its potential as a lead
compound for the development of new carbonic anhydrase inhibitors (CAls). Advances in computational drug
design facilitate the rapid identification and refinement of drug candidates, thereby accelerating the drug discovery
process. Among these methodologies, molecular docking has emerged as a crucial technique for elucidating ligand-
receptor interactions and binding affinities. Additionally, computational profiles of absorption, distribution,
metabolism, excretion, and toxicity (ADMET) enable the prioritization of compounds with advantageous
pharmacokinetic characteristics. This study centers on the in-silico design and analysis of novel acetaminophen
derivatives aimed at inhibiting carbonic anhydrase II. Through molecular docking, we evaluate the binding
interactions of these derivatives and predict their pharmacokinetic and drug-likeness properties, ultimately
identifying candidates for experimental validation and the advancement of more effective CAls.

1.1. Carbonic Anhydrase as a Therapeutic Target

CAs are involved in numerous physiological and pathological processes, making them attractive targets for drug
development [8]. CA II, in particular, is highly expressed in tissues such as the eyes, kidneys, and brain, where its
inhibition can modulate intraocular pressure, electrolyte balance, and neuronal excitability [9]. Traditional
sulfonamide-based inhibitors, while effective, often lack isoform selectivity, leading to off-target effects [10]. Recent
efforts have focused on identifying non-sulfonamide inhibitors, including coumarins, phenols, and polyamines, to
overcome these limitations [11].
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Acetaminophen, a well-known analgesic, has been shown to weakly inhibit CA activity, suggesting that its
derivatives could be optimized for enhanced binding affinity [12]. Structural modifications of the acetaminophen
scaffold, such as halogenation or incorporation of heterocyclic moieties, may improve interactions with the CA
active site while maintaining favorable drug-like properties [13]. Computational approaches provide an efficient
means of exploring these modifications before synthetic efforts are undertaken.

1.2. Computational Approaches in CA Inhibitor Design

1.2.1. Molecular Docking for Binding Affinity Prediction

Molecular docking is a widely used computational technique to predict the binding orientation and affinity of small
molecules within a protein’s active site [14]. Recent studies have successfully employed docking to identify novel
CA inhibitors, including natural products and synthetic derivatives [15]. By simulating the interaction between
acetaminophen derivatives and CA II, we can prioritize compounds with the highest predicted binding energies
and favorable interaction patterns (e.g., zinc coordination, hydrogen bonding with key residues like Thr199 and
His94) [16].

1.2.2. ADMET and Drug-Likeness Profiling

A major challenge in drug development is ensuring that candidates possess suitable pharmacokinetic properties
for clinical use [17]. Computational tools such as SwissADME and pkCSM allow for rapid prediction of key ADMET
parameters, including solubility, permeability, cytochrome P450 interactions, and toxicity [18]. Additionally, drug-
likeness filters (e.g., Lipinski’s Rule of Five, Veber’s criteria) help assess oral bioavailability and synthetic feasibility
[19]. Integrating these analyses with docking results enables the identification of lead compounds with balanced
potency and pharmacokinetic profiles.

Despite the clinical success of sulfonamide-based CAls, their side effects necessitate the development of alternative
inhibitors [20]. Acetaminophen derivatives represent an underexplored class of potential CAls, and computational
screening offers a cost-effective strategy to identify promising candidates before experimental validation.

1.3. Objectives

1.3.1. Molecular Docking Studies

Evaluate the binding modes and affinities of newly designed acetaminophen derivatives against CA II. Compare
their docking scores with reference inhibitor (5-(dimethylamino)-1-naphthalenesulfonamide).

1.3.2. Pharmacokinetic and Toxicity Prediction
Assess ADMET properties to identify derivatives with optimal solubility, permeability, and metabolic stability.
Apply drug-likeness rules to filter compounds with high oral bioavailability potential.

1.4. Significance of the Study

This study provides a computational framework for the rational design of novel CA inhibitors derived from
acetaminophen. By combining molecular docking with ADMET prediction, we aim to identify lead compounds with
improved selectivity and drug-like properties, potentially leading to safer and more effective CA-targeting
therapies.

2. Materials and methods

2.1. Preparation of the protein crystallographic structure by protein preparation panel
The X-ray crystallographic structure of carbonic anhydrase enzyme was obtained from the protein databank
(https://www.rcsb.org/, PDB ID:10KL). The protein preparation wizard (Schrédinger Suite 2025-1, Glide module)
was utilized to correct particular mistakes, such as missing hydrogen atoms from the crystallographic structure of
the protein.

The methodology employed in this work has been formerly elucidated [21]. The bond order was determined, and
any potentially absent hydrogen atoms in the crystallographic structure were included. In addition, disulfide bonds
were formed between two adjacent sulfur atoms, but the remaining choices were kept at their usual settings. The
final refining stage was performing full energetic optimization using the OPLS3 force field, with a heavy atom RMSD
setat 0.3 A[22].

2.2. Preparation of Ligands

Using a 2D sketcher, the investigated compounds (A-1) were created and then uploaded to the Schrédinger suite's
Maestro software workspace. For every two-dimensional structure, low-energy 3D conformers with appropriate
bond lengths and angles were produced. [23]. For every ligand structure, the potential ionization states were
produced at a physiological pH of 7.2 + 0.2. An optimum potential liquid simulation (OPLS3) force field was used to
minimize the ligands, with all other settings being set to default [24].
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2.3. Generation of the Grid

By selecting the co-crystallized ligand at the protein's active site at random, the receptor grid generating panel
produced the glide grid file, which automatically revealed the %, y, and z coordinates. Glide determines a default
center and default size for the region for which grids will be calculated based on the position and size of the ligand.

2.4. Molecular docking studies

Molecular docking was performed using the ligand docking panel. The glide gride and the prepared ligands files
were chosen. The run was conducted using XP docking mode. Finally, the docking scores in kcal/mole and the
visualization images were recorded [25, 26].

2.5. ADME study

The Swiss ADME server virtually identified the pharmacokinetic characteristics of gastrointestinal absorption,
systemic distribution, metabolism, excretion, and drug-likeness factors. The Mrvin S] panel sketched the
compounds under study and converted them into SMILES. The run sequence was completed, and the outcomes
were captured as pictures.

Result and discussion

3.1. Molecular docking results of the investigated compounds in the carbonic anhydrase enzyme active site
The docking study was used to estimate the suggested binding interaction, affinity, and preferred orientation for
each docking pose, and the binding interaction energy (AG) of the investigated compounds with histone deacetylase
enzyme, Table 1. In addition, Figure 3.1. Show the calculated interaction energies for the hit compounds examined
were all consistent with the reported results, suggesting that compounds A and B may have effective inhibitory
activities against carbonic anhydrase enzyme.

Table 3.1 Docking scores in Kcal/mol and amino acid residues involved in ligand-receptor interaction
(PDB ID: 10KL).

Compound Score in Kcal/mol Amino acid residues involved in
ligand-receptor interaction

Compound A -6.67 Zn262, Asn67, Tyr5

Compound B -6.47 Zn262, Trp5

Compound C -6.20 Zn262, Asn67, Asp72, Phe130

Compound D -6.08 Zn262, Hie64

Compound E -6.04 7Zn262, Hie64

Compound F -5.64 Zn262, Thr198, Hie64

Compound G -5.47 Zn262, Thr198, GIn92, Glu69,
Hie64, Arg58

Compound H -4.76 Zn262, Thr198, GIn92

Compound [ -4.64 Zn262, Thr198

5-(dimethylamino)-1- -6.24 Zn292, Thr198, Thr199

naphthalenesulfonamide

*Red color represents the amino acid residues involved in the interaction between the reference ligand (5-
(dimethylamino)-1-naphthalenesulfonamide) and the enzyme
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docked in the carbonic anhydrase enzyme (PDB ID: 10KL)

3.2. ADME evaluation
The Pharmacokinetic properties and drug likeness of compounds (A-I) were evaluated by Swiss ADME server and

the predicted results are shown in figure (3.2).
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Compound I
Figure (3.2) The predicted results of compounds (A-I) evaluation by Swiss ADME server

All the investigated compounds (A-I) show high GI absorption, no BBB penetration, act as P-gp substrate, no
inhibitory activity on CYP enzymes and good druglikness properties.

The results of the investigated compounds were found promising and encouraging for future synthesis and
performing a preliminary pharmacological assessment such as in-vitro MTT study against several cell lines.
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