
Eurasian Journal of Analytical Chemistry 
  ISSN: 1306-3057 OPEN ACCESS 2024 20 (2): 122-133 

 

Molecular Docking Techniques in Drug Discovery: A 
Comprehensive Review 

 

Shubham Shende1*, Amit Awari2, Mahesh Hadke3, Praful Urade4 

 
1*,2,3,4Manwatkar College of Pharmacy, Chandrapur, Maharashtra,  India. 

 
*Corresponding author: Shubham M. Shende 

*Department of Pharmaceutics, Manwatkar College of Pharmacy, Chandrapur, India,  
Email: Sshende35@gmail.com, Phone No. 7507083708 ORCID ID(s): 0000-0002-6564-5745 

 
Abstract 
Molecular docking has emerged as a cornerstone of modern drug discovery and development. By predicting the 
binding orientation and affinity of small molecules to their biological targets, docking enables rational design of 
therapeutics, accelerates lead identification, and reduces the reliance on resource-intensive experimental 
approaches. This review provides a comprehensive overview of molecular docking techniques, including 
fundamental principles, algorithms, scoring functions, and software tools. Emphasis is placed on the applications 
of docking in hit identification, lead optimization, drug repurposing, and mechanistic studies. Additionally, the 
limitations of docking methodologies are critically discussed, with special attention to challenges in protein 
flexibility, solvation models, and scoring accuracy. Finally, future perspectives are explored, highlighting the 
integration of artificial intelligence, molecular dynamics, and high-throughput screening in advancing the accuracy 
and predictive power of docking. Collectively, this review underscores the indispensable role of molecular docking 
in structure-based drug discovery. 
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1. Introduction 
 
Drug discovery has traditionally been a time-consuming and expensive process, often requiring decades of 
research and billions of dollars in investment to bring a single drug to market. With the advent of computational 
approaches, particularly computer-aided drug design (CADD), the efficiency of drug development has been 
significantly improved. Among these computational techniques, molecular docking stands out as a fundamental 
tool that enables the prediction of binding modes and affinities of ligands with their biological macromolecular 
targets.[1] 
Molecular docking is particularly relevant in the context of structure-based drug design (SBDD), where knowledge 
of the three-dimensional (3D) structure of a receptor (protein, DNA, or RNA) guides the rational design of ligands. 
This technique has transformed drug discovery pipelines by facilitating the identification of novel drug candidates, 
optimizing lead compounds, and providing mechanistic insights into molecular interactions.[2] 
 

2. Principles of Molecular Docking 
 
2.1 Conceptual Basis 
The fundamental principle of molecular docking lies in the prediction of the preferred orientation and 
conformation of a ligand when bound to a target macromolecule, typically a protein, enzyme, or nucleic acid. The 
ultimate objective is to determine the most stable binding pose, which is usually associated with the lowest free 
energy of interaction. This prediction provides insight into both the structural complementarity and the energetic 
favorability of the ligand–receptor complex, thereby guiding rational drug design.[3] 
In essence, docking involves two tightly interlinked processes: 
1. Search for Binding Poses: 
a. The ligand is virtually "fitted" into the binding cavity of the receptor. 
b. Multiple translational, rotational, and conformational degrees of freedom are explored. 
c. The search space is vast because ligands can adopt many conformations, and the protein binding site may also 
exhibit flexibility. 
2. Scoring of Binding Poses: 
a. Each generated pose is evaluated by a scoring function to estimate its binding free energy. 
b. Poses are then ranked to identify the most probable biologically relevant binding orientation. 
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The validity of docking predictions depends on accurate representation of both the receptor and ligand. While early 
docking methods treated both molecules as rigid bodies, modern approaches incorporate varying degrees of 
flexibility, acknowledging that biomolecular interactions are dynamic rather than static.[4] 
Moreover, docking is grounded in the assumption that the biologically relevant binding pose corresponds to a 
global or near-global minimum on the energy landscape. Thus, an efficient docking algorithm must adequately 
sample this energy landscape to identify the most stable complex within a reasonable computational timeframe.[5] 
By combining structural biology, computational chemistry, and thermodynamic principles, molecular docking 
serves as a bridge between molecular structure and biological function, ultimately supporting the discovery and 
optimization of novel therapeutics.[6] 
 
2.2 Models of Binding 
Understanding how ligands recognize and interact with their biological targets is fundamental to the concept of 
molecular docking. Several models have been proposed to explain the nature of ligand–receptor interactions, 
ranging from simple rigid-body assumptions to more sophisticated dynamic models. The three most widely 
discussed are the Lock-and-Key, Induced-Fit, and Conformational Selection models. 
 
2.2.1 Lock-and-Key Model 
Proposed by Emil Fischer in 1894, the lock-and-key model is one of the earliest conceptualizations of molecular 
recognition. It suggests that both the ligand and receptor are rigid entities with complementary geometric and 
chemical features, much like a key fitting into a lock.[7] According to this model: 
• The active site of the receptor has a pre-formed shape that exactly accommodates the ligand. 
• Binding occurs without any structural rearrangements in either the ligand or the receptor. 
While the lock-and-key model provides a simple and intuitive framework for understanding molecular recognition, 
it does not account for the inherent flexibility of biomolecules. Consequently, it is often regarded as an 
oversimplification, though it remains historically significant and conceptually useful in certain rigid binding 
scenarios. 
 
2.2.2 Induced-Fit Model 
Introduced by Daniel Koshland in 1958, the induced-fit model acknowledges that proteins and ligands are not rigid 
but rather dynamic entities.[8] In this model: 
• The initial interaction between ligand and receptor may be weak. 
• Upon contact, conformational adjustments are induced in one or both partners, optimizing complementarity. 
• This structural rearrangement enhances the stability and specificity of the ligand–receptor complex. 
The induced-fit model better reflects biological reality than the lock-and-key model, as it accounts for 
conformational changes frequently observed in experimental studies, such as enzyme catalysis, receptor 
activation, and allosteric regulation. However, it implies that flexibility is primarily triggered by ligand binding, 
which may not always capture the full complexity of molecular interactions. 
 
2.2.3 Conformational Selection Model 
The conformational selection model offers a more nuanced perspective, combining principles of molecular 
dynamics and thermodynamics.[9] It posits that: 
• A receptor naturally exists in a dynamic equilibrium among multiple conformational states, even in the absence 
of a ligand. 
• The ligand does not induce a new conformation but instead selectively binds to the pre-existing conformation 
that is most favorable for binding. 
• Ligand binding stabilizes this conformation, shifting the equilibrium toward the bound state. 
This model is supported by evidence from NMR spectroscopy, X-ray crystallography, and molecular dynamics 
simulations, which reveal that proteins often sample a broad conformational landscape. Conformational selection 
provides a unifying explanation for molecular recognition and is increasingly considered the prevailing paradigm 
in modern structural biology. 
 
2.2.4 Comparative Perspective 
• The Lock-and-Key model emphasizes geometric complementarity but neglects flexibility. 
• The Induced-Fit model introduces adaptability, explaining conformational changes upon ligand binding. 
• The Conformational Selection model integrates protein dynamics, recognizing pre-existing conformational states 
and selective stabilization. 
In practice, molecular recognition may not strictly follow one model but instead involve elements of both induced 
fit and conformational selection. The prevailing view is that ligand binding is a synergistic process, where 
conformational selection initiates the interaction and induced fit further refines the binding complex. 
 
2.3 Intermolecular Forces in Docking 
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The stability and specificity of ligand–receptor interactions are primarily governed by a variety of non-covalent 
intermolecular forces. These interactions determine the binding affinity, orientation, and overall biological 
relevance of a docked complex. Molecular docking simulations aim to quantify these forces through scoring 
functions, thereby predicting the likelihood of successful ligand binding.[10] The most significant intermolecular 
forces involved in docking include the following: 
 
2.3.1 Hydrogen Bonding 
Hydrogen bonds are among the most critical determinants of ligand binding. They occur when a hydrogen atom 
covalently attached to an electronegative atom (e.g., oxygen or nitrogen) interacts with another electronegative 
atom possessing a lone pair of electrons.[11] 
• In proteins, hydrogen bonds often form between ligand functional groups (–OH, –NH3, carbonyl) and receptor 
residues such as serine, threonine, tyrosine, asparagine, and glutamine. 
• They contribute to directionality and specificity of binding, as hydrogen bonds are highly geometrically 
constrained. 
• Many scoring functions explicitly account for hydrogen bond strength and orientation due to their crucial role in 
stabilizing complexes. 
 
2.3.2 Hydrophobic Interactions 
Hydrophobic interactions occur when nonpolar regions of a ligand interact with hydrophobic amino acid side 
chains, such as leucine, isoleucine, valine, and phenylalanine. These interactions are primarily driven by the 
entropy gain associated with the release of ordered water molecules from the binding interface.[12] 
• Hydrophobic pockets within proteins often dictate ligand positioning. 
• These interactions enhance binding affinity and play a central role in optimizing ligand potency. 
• Drug-like molecules often exploit hydrophobic contacts to increase bioavailability and membrane permeability. 
 
2.3.3 van der Waals Forces 
Van der Waals forces are weak, short-range interactions arising from temporary dipoles induced by fluctuating 
electron distributions. Although individually weak, their cumulative effect across numerous ligand–receptor 
contacts can be substantial.[13] 
• They are particularly important in cases where ligands are buried within hydrophobic cavities. 
• Docking programs approximate these forces using Lennard-Jones potentials to capture both attractive 
(dispersion) and repulsive (steric clash) components. 
• These interactions often dictate the “fit” of a ligand in the binding pocket, complementing stronger hydrogen 
bonds and ionic contacts. 
 
2.3.4 Electrostatic Interactions 
Electrostatic forces arise between charged groups of the ligand and receptor, such as carboxylate (–COO_), 
ammonium (–NH3), or phosphate groups. They are typically long-range interactions, governed by Coulomb’s law, 
and strongly influenced by solvent dielectric properties.[14] 
• Salt bridges, formed between oppositely charged groups (e.g., lysine or arginine with aspartate or glutamate), 
contribute substantially to binding affinity. 
• Electrostatics often drive the initial recognition process, guiding the ligand into the binding site before more 
specific interactions take over. 
• Many docking algorithms apply electrostatic potential maps to approximate these interactions. 
 
2.3.5 π-πand Cation–π Stacking 
Aromatic interactions are particularly relevant for ligands containing benzene rings, heteroaromatic systems, or 
cationic moieties.[15] 
• stacking occurs between aromatic rings of ligands and aromatic residues (e.g., phenylalanine, tyrosine, 
tryptophan). These can be face-to-face (parallel stacking) or edge-to-face (T-shaped). 
• Cation– interactions involve electrostatic attraction between a positively charged group (e.g., lysine side chain, 
quaternary ammonium ligand group) and the electron-rich face of an aromatic ring. 
• These interactions are crucial in neurotransmitter recognition, enzyme–substrate interactions, and receptor–
ligand binding, particularly in G-protein-coupled receptors (GPCRs). 
 
2.3.6 Integrated Role in Docking 
In biological systems, ligand binding is rarely governed by a single interaction type. Instead, a network of non-
covalent forces acts synergistically to define the strength and specificity of binding. Hydrogen bonds and 
electrostatics provide specificity, hydrophobic and van der Waals forces contribute to overall stabilization, while 
π-π and cation–π stacking often impart selectivity in receptors with aromatic residues.[16] 
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Molecular docking aims to approximate these diverse forces through computational scoring functions, although 
challenges remain in accurately modelling solvent effects, entropic contributions, and long-range electrostatics. 
Nonetheless, these interactions collectively form the molecular basis of recognition, underscoring their importance 
in drug design and discovery.[17] 
 

3. Methodology of Molecular Docking 
 
The process of molecular docking involves several interconnected steps that ensure accurate prediction of ligand–
receptor interactions. From target and ligand preparation to docking simulations, scoring, and algorithmic 
approaches, each stage plays a critical role in determining the quality and reliability of docking outcomes.[18-19] 
 
3.1 Target Preparation 
3.1.1 Protein Selection 
The first step in docking involves obtaining the three-dimensional structure of the target protein. Structures are 
typically retrieved from the Protein Data Bank (PDB), which houses experimentally resolved macromolecular 
structures determined by X-ray crystallography, cryo-electron microscopy (cryo-EM), or nuclear magnetic 
resonance (NMR) spectroscopy.[20-21] 
• If an experimental structure is unavailable, homology modeling can be employed, wherein the target sequence is 
aligned with a structurally known homolog to predict its 3D structure. 
• Other computational approaches, such as AlphaFold predictions, are increasingly used to generate high-quality 
models. 
 
3.1.2 Pre-Processing 
Raw protein structures often contain additional molecules such as water molecules, cofactors, ions, or 
crystallization artifacts, which may interfere with docking.[22] 
• Non-essential water molecules are usually removed, except those directly involved in ligand recognition. 
• Cofactors may be retained if they are biologically relevant. 
• Protonation states are assigned depending on physiological pH, and missing side chains or atoms are 
reconstructed using specialized software (e.g., Chimera, MOE, Maestro). 
 
3.1.3 Energy Minimization 
Before docking, the protein structure is subjected to energy minimization to relieve steric clashes and optimize 
geometrical parameters.[23] 
• Force fields such as AMBER, CHARMM, or OPLS are commonly used. 
• Energy minimization ensures that the receptor adopts a biologically realistic conformation, thereby increasing 
the accuracy of docking predictions. 
 
3.2 Ligand Preparation 
3.2.1 Structure Generation 
Ligands are typically sourced from public chemical databases such as PubChem, ZINC, ChEMBL, or DrugBank. 
Alternatively, novel ligands may be designed manually using chemical drawing software (ChemDraw, 
MarvinSketch) and converted into 3D conformations.[24] 
 
3.2.2 Optimization 
Ligand preparation includes: 
• Geometry optimization using molecular mechanics or quantum mechanics. 
• Consideration of tautomeric states and protonation states, which can significantly impact binding interactions. 
• Generation of stereoisomers, especially for chiral compounds, as different isomers often exhibit different binding 
affinities. 
 
3.2.3 Charge Assignment 
Partial charges are assigned to ligand atoms, as electrostatic interactions strongly influence docking outcomes. 
• Gasteiger charges and Merck Molecular Force Field (MMFF) charges are widely used in AutoDock and other 
programs. 
• Accurate charge assignment is critical for modeling hydrogen bonds, salt bridges, and electrostatic potentials. 
 
3.3 Docking Simulation 
Docking simulation involves predicting how ligands interact with the receptor binding site. Various approaches 
differ in computational complexity and biological realism.[25-28] 
• Rigid Docking: Both ligand and receptor are treated as rigid bodies. This method is computationally fast but 
oversimplified, often ignoring biologically relevant flexibility. 



126 Shubham Shende et al. 
 

• Flexible Ligand Docking: The ligand is allowed to adopt multiple conformations while the receptor remains rigid. 
This is the most widely applied approach, balancing accuracy and efficiency. 
• Flexible Docking (Receptor and Ligand): Both receptor and ligand are modeled with conformational flexibility. 
Although computationally expensive, it provides more realistic predictions. Hybrid approaches (e.g., induced-fit 
docking in Glide) attempt to simulate local receptor flexibility. 
• Blind Docking: When the binding site is unknown, the entire protein surface is searched for potential binding 
pockets. This method is especially useful for novel or poorly characterized proteins but requires significant 
computational resources. 
 
3.4 Scoring Functions 
Scoring functions evaluate docked poses by estimating the binding free energy (ѧG) of the ligand–receptor 
complex.[29-30] These mathematical models fall into four categories: 
a. Force-Field Based 
a.     Use classical physics-based potentials (electrostatics, van der Waals, bond energies). 
b. Provide detailed insights but computationally demanding. 
b. Empirical 
a. Derived from experimental binding affinities and structural features. 
b. Consider hydrogen bonds, hydrophobicity, desolvation, and entropy. 
c. Knowledge-Based 
a. Utilize statistical potentials derived from large datasets of protein–ligand complexes. 
b. Faster but rely heavily on training data quality. 
d. Consensus Scoring 
a. Combines multiple scoring functions to minimize false positives/negatives. 
b. Increasingly applied in large-scale virtual screening campaigns. 
 
3.5 Docking Algorithms 
Docking algorithms explore the conformational space of ligands within the receptor binding site. [31-34]They can 
be broadly classified as: 
• Systematic Methods: Exhaustively explore all possible conformations and orientations of the ligand. Accurate but 
often impractical for larger systems due to combinatorial explosion. 
• Stochastic Methods: Rely on probabilistic sampling techniques, such as Monte Carlo simulations or simulated 
annealing, to explore conformational space more efficiently. 
• Evolutionary Algorithms: Inspired by natural selection, genetic algorithms (GA) iteratively evolve ligand poses to 
optimize fitness (binding affinity). GOLD, for example, employs a GA for docking. 
• Molecular Dynamics-Based Methods: Use molecular dynamics (MD) simulations to capture receptor flexibility 
and ligand motion in real time. While computationally demanding, they provide the highest biological realism. 
 
3.6 Popular Docking Software 
Numerous docking tools have been developed, each with unique algorithms and scoring functions. Widely used 
programs include: 
• AutoDock & AutoDock Vina: Open-source, widely used in academia and industry, with flexible ligand docking and 
customizable scoring functions. 
• GOLD (Genetic Optimization for Ligand Docking): Uses genetic algorithms to explore conformational space; 
known for accuracy in handling ligand flexibility. 
• Glide (Schro dinger Suite): High-precision commercial software with induced-fit docking and robust scoring 
functions. 
• MOE (Molecular Operating Environment): A comprehensive suite for docking, visualization, and 
cheminformatics. 
• DOCK: One of the earliest docking programs, primarily used for fragment-based docking. 
• FlexX: Fragment-based approach that incrementally assembles ligands into the binding site. 
4. Applications of Molecular Docking in Drug Discovery[35-38] 
Molecular docking has emerged as a cornerstone of modern structure-based drug discovery (SBDD). Its ability to 
simulate ligand–receptor interactions at the atomic level provides an invaluable tool for predicting binding 
affinities, elucidating mechanisms of action, and guiding rational drug design. Beyond theoretical utility, docking 
has been extensively applied in real-world drug development pipelines, from virtual screening to personalized 
medicine. The following subsections outline its major applications. 
 
4.1 Virtual Screening and Hit Identification 
One of the most impactful applications of molecular docking is virtual screening (VS), where large chemical 
libraries are computationally screened against a biological target to identify potential binders (“hits”). Compared 
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with high-throughput screening (HTS), which relies on costly experimental assays, VS is faster, cheaper, and 
scalable to millions of compounds.[39-42] 
• High-throughput docking platforms enable screening of publicly available databases such as ZINC, PubChem, 
ChEMBL, and Enamine REAL. 
• Docking-based VS integrates scoring functions to rank ligands by predicted binding affinities. 
• Shortlisted compounds undergo secondary filtering (e.g., ADMET properties, Lipinski’s Rule of Five) before 
experimental validation. 
A notable example is the development of HIV-1 protease inhibitors, where VS played a critical role in identifying 
novel scaffolds. More recently, VS has been instrumental in discovering inhibitors against SARS-CoV-2 main 
protease (Mpro) and RNA-dependent RNA polymerase (RdRp) during the COVID-19 pandemic, highlighting its 
relevance in emergency drug discovery campaigns.[43-48] 
 
4.2 Lead Optimization 
After initial hits are identified, docking contributes to lead optimization, the iterative process of enhancing potency, 
selectivity, and drug-like properties.[49-50] 
• Docking helps in predicting binding modes of ligand analogs, guiding medicinal chemists in designing chemical 
modifications. 
• It aids in exploring structure–activity relationships (SARs) by correlating specific structural changes with 
biological activity. 
• Multiple docking cycles allow fine-tuning of pharmacokinetic and pharmacodynamic properties. 
For example, optimization of kinase inhibitors, such as imatinib (Gleevec) for chronic myeloid leukemia, leveraged 
docking predictions to refine ATP-binding site interactions and achieve selective inhibition. Similarly, in NSAID 
development, docking provided insights into how small modifications influence COX-1 versus COX-2 selectivity, 
reducing side effects. 
 
4.3 Mechanistic Insights 
Docking also serves as a powerful tool for deciphering molecular mechanisms underlying drug–target 
interactions.[51] 
• It reveals binding modes by predicting how ligands occupy the active site. 
• It identifies key amino acid residues responsible for specificity and affinity. 
• It aids in visualizing transition states and allosteric effects. 
For instance, docking studies have illuminated how neuraminidase inhibitors such as oseltamivir (Tamiflu) achieve 
influenza inhibition by mimicking the natural substrate, sialic acid. In oncology, docking-based mechanistic studies 
of EGFR mutations explain resistance to first-generation inhibitors and support the design of next-generation 
therapies. 
Mechanistic insights also extend to enzyme inhibition kinetics, such as competitive versus non-competitive 
binding, which can be visualized and predicted through docking simulations combined with molecular dynamics. 
 
4.4 Drug Repurposing 
Drug repurposing (or repositioning) refers to the application of existing FDA-approved drugs to new therapeutic 
targets. Molecular docking is a frontline strategy for such approaches, as it rapidly evaluates binding of known 
drugs against novel protein targets.[52] 
• Repurposing reduces time and cost, since safety profiles of approved drugs are already established. 
• Docking facilitates in silico hypothesis generation, which can be tested experimentally with minimal resources. 
During the COVID-19 crisis, docking was extensively applied to repurpose antivirals (e.g., lopinavir, remdesivir, 
favipiravir) and non-antivirals (e.g., chloroquine, ivermectin) by screening them against SARS-CoV-2 proteins. 
Although not all predicted candidates were clinically effective, these studies showcased docking’s role in rapidly 
mobilizing therapeutic strategies during global health emergencies. 
Outside pandemics, docking-driven repurposing has suggested novel uses for drugs such as disulfiram (approved 
for alcoholism) as a potential anticancer agent through inhibition of proteasome activity. 
 
4.5 Structure-Based Design of Inhibitors 
Docking is an essential component in the rational design of inhibitors targeting specific biomolecules such as 
kinases, proteases, GPCRs, and viral proteins.[53] 
• Kinase inhibitors: Docking provides detailed maps of ATP-binding pockets, enabling selective inhibitor design. 
Successful examples include sunitinib and sorafenib, which target multiple receptor tyrosine kinases involved in 
tumor angiogenesis. 
• Protease inhibitors: Docking has guided development of drugs like ritonavir and saquinavir against HIV protease. 
• GPCR ligands: For G-protein coupled receptors, docking simulations have elucidated both orthosteric and 
allosteric binding modes, advancing treatments for cardiovascular and neurological disorders. 
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• Viral inhibitors: Docking played a pivotal role in designing neuraminidase inhibitors (influenza) and Mpro 
inhibitors (COVID-19). 
By offering atomic-level precision, docking reduces reliance on trial-and-error methods and accelerates the design 
of highly specific and potent inhibitors. 
 
4.6 Personalized Medicine 
The future of drug discovery increasingly emphasizes individualized therapy, and molecular docking is poised to 
play a central role.[54] 
• Patient-specific mutations can be modeled in silico to assess drug binding. 
• Docking enables the prediction of resistance mutations in pathogens or cancers, guiding tailored treatment 
regimens. 
• Integration with genomic and proteomic data allows the design of precision therapies aligned with a patient’s 
unique molecular profile. 
For instance, in non-small cell lung cancer (NSCLC), docking simulations of EGFR mutations help predict whether 
a patient will respond better to gefitinib, erlotinib, or osimertinib. Similarly, in personalized antimicrobial therapy, 
docking can forecast how bacterial mutations alter antibiotic efficacy, aiding in rational treatment selection. 
 
4.7 Integrative Perspective 
The applications of docking extend across the entire drug discovery pipeline: 
• Early stage: High-throughput virtual screening and hit identification. 
• Intermediate stage: Lead optimization and mechanistic exploration. 
• Late stage: Repurposing, inhibitor design, and personalized medicine. 
Docking is often used in synergy with molecular dynamics simulations, QSAR modeling, and machine learning 
approaches, creating a multi-dimensional platform for rational drug discovery. 
 

5. Limitations and Challenges of Molecular Docking 
 
While molecular docking has proven indispensable in modern drug discovery, it is not without significant 
limitations. These challenges often arise from the approximations inherent in docking algorithms and the complex 
nature of biomolecular interactions, which cannot yet be captured with complete accuracy. Understanding these 
shortcomings is crucial, as it helps researchers interpret docking results with caution and motivates continuous 
methodological improvements.[51-52] 
 
5.1 Scoring Function Inaccuracies 
At the core of docking is the scoring function, a mathematical model used to approximate the binding affinity of a 
ligand–receptor complex.[51-54] Despite their central role, scoring functions remain a major bottleneck: 
• Limited accuracy: Most scoring functions simplify complex thermodynamic phenomena into additive terms (e.g., 
hydrogen bonding, hydrophobic contacts). They often fail to capture entropic contributions, long-range 
electrostatics, and cooperative effects. 
• Overfitting risk: Empirical and knowledge-based functions are trained on limited datasets, which may bias 
predictions toward specific protein families. 
• Correlation issues: Predicted docking scores frequently show poor correlation with experimental binding 
affinities (e.g., ICso, Kd values). 
For example, a ligand ranked as a top candidate in silico may exhibit negligible binding during biochemical assays, 
highlighting the gap between computational predictions and experimental validation. This underscores the need 
for improved physics-based scoring functions and hybrid approaches integrating machine learning. 
 
5.2 Protein Flexibility 
A major simplification in docking simulations is the treatment of the receptor as a rigid body. In reality, proteins 
are highly dynamic and exist in multiple conformational states.[53] 
• Rigid docking limitations: Fixed conformations may exclude binding-competent states, leading to missed hits. 
• Induced fit and conformational selection: Many ligands bind by stabilizing pre-existing conformations or 
inducing structural rearrangements, phenomena difficult to capture with rigid docking. 
• Flexible docking trade-offs: Algorithms that incorporate protein flexibility improve accuracy but dramatically 
increase computational cost. 
For instance, in kinase inhibitor design, accounting for DFG-in and DFG-out conformations of kinases is critical, but 
rigid docking cannot capture such transitions. Advanced techniques like ensemble docking, molecular dynamics-
based docking, or enhanced sampling methods are often necessary to overcome this limitation. 
 
5.3 Solvent Modeling 
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The role of the solvent, particularly water molecules, is a critical determinant of ligand–protein interactions.[52] 
However, most docking algorithms use simplified solvation models: 
• Implicit solvent models: Approximate the solvent as a continuous medium, ignoring specific water–ligand or 
water–protein interactions. 
• Neglected bridging waters: Bound water molecules often mediate crucial hydrogen bonds, yet many pre-
processing steps remove them indiscriminately. 
• Desolvation penalties: Simplified models inadequately account for the energetic cost of displacing water 
molecules during binding. 
As a result, predicted binding affinities may deviate substantially from experimental values. For example, in the 
case of HIV-1 protease inhibitors, neglecting bridging waters leads to underestimation of binding strength and 
misranking of ligands. More accurate explicit solvation models, while computationally demanding, are increasingly 
being integrated into advanced docking protocols. 
 
5.4 False Positives and False Negatives 
One of the practical challenges of virtual screening is the high rate of false predictions: 
• False positives: Docking often identifies compounds predicted to bind strongly, but experimental assays reveal 
little to no activity. 
• False negatives: True binders may be overlooked due to unfavorable scoring or conformational biases. 
These errors arise from cumulative inaccuracies in scoring, flexibility modeling, and solvation treatment. While 
consensus scoring and post-docking molecular dynamics can reduce false predictions, they cannot eliminate them 
entirely. 
For example, in virtual screening campaigns against SARS-CoV-2 targets, numerous top-ranked compounds failed 
in vitro, underscoring the necessity of experimental confirmation and highlighting the supportive—not 
standalone—role of docking in drug discovery. 
 
5.5 Computational Cost 
The level of accuracy in docking is often limited by available computational resources: 
• Large-scale screening: Screening millions of compounds requires substantial high-performance computing 
(HPC) infrastructure. 
• Flexible docking: Incorporating ligand and receptor flexibility significantly increases computational demands. 
• Advanced scoring methods: Free energy perturbation (FEP) or molecular dynamics-based rescoring improves 
reliability but at a prohibitive computational expense. 
As a result, researchers face a trade-off between speed and accuracy. Academic groups with limited resources may 
be constrained to simplified methods, while industry leverages large-scale cloud computing or supercomputers 
for more exhaustive simulations. 
 
5.6 Additional Limitations 
Beyond the major challenges listed above, several other issues further complicate molecular docking: 
• Ligand preparation errors: Incorrect tautomeric states, protonation states, or stereoisomers can severely distort 
docking predictions. 
• Target ambiguity: For multi-domain proteins or proteins with cryptic allosteric sites, defining the correct binding 
site is non-trivial. 
• Benchmarking problems: Lack of standardized benchmarks across docking software leads to inconsistent 
performance comparisons. 
• Biological complexity: Docking usually studies isolated ligand–protein interactions, whereas in vivo conditions 
involve membranes, cofactors, competing ligands, and protein–protein interactions. 
 
5.7 Strategies to Overcome Limitations 
Although docking faces significant challenges, numerous strategies are being developed to enhance its 
reliability[53-55]: 
• Hybrid approaches: Combining docking with molecular dynamics, quantum mechanics/molecular mechanics 
(QM/MM), or free energy calculations improves accuracy. 
• Consensus scoring: Using multiple scoring functions in parallel helps reduce biases and misranking. 
• Ensemble docking: Docking against multiple protein conformations captures receptor flexibility more effectively. 
• Machine learning integration: AI-driven scoring functions trained on large experimental datasets are beginning 
to outperform traditional models. 
• Cloud and parallel computing: Advances in HPC and GPU acceleration make large-scale flexible docking 
increasingly feasible. 
 

6. Future Perspectives 
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Molecular docking has matured into an essential tool in computer-aided drug discovery (CADD), yet ongoing 
advancements in computational power, algorithm design, and data science are rapidly reshaping the field. As 
limitations of conventional docking—such as inadequate treatment of flexibility, solvation, and scoring 
inaccuracies—become apparent, new methodologies are emerging to bridge the gap between in silico predictions 
and experimental reality. The following subsections highlight major future directions. 
 
6.1 Integration with Molecular Dynamics (MD) 
One of the most promising avenues for improving docking accuracy is the integration of molecular dynamics (MD) 
simulations. Unlike traditional docking, which captures a static snapshot of ligand–protein binding, MD provides a 
time-resolved description of molecular motions. 
• Capturing flexibility: MD accounts for both ligand and protein dynamics, enabling exploration of multiple 
conformations and binding pathways. 
• Refining docking poses: Initial docking predictions can be refined by MD, allowing unstable poses to be discarded 
and stable ones validated. 
• Binding free energy calculations: Advanced MD techniques, such as free energy perturbation (FEP) and 
metadynamics, provide quantitative estimates of binding affinities with greater accuracy than classical scoring 
functions. 
Applications include studying drug resistance mutations in HIV protease, where MD simulations reveal how 
conformational changes weaken inhibitor binding, guiding the design of next-generation therapies. As 
computational resources become more accessible, docking–MD hybrid pipelines are likely to become standard in 
drug discovery workflows. 
 
6.2 Machine Learning and AI-Enhanced Docking 
The rise of artificial intelligence (AI) and machine learning (ML) has created transformative opportunities for 
molecular docking. Traditional scoring functions, which rely on empirical or physics-based approximations, are 
increasingly being complemented—or even replaced—by data-driven models. 
• Improved scoring functions: Deep learning models trained on large datasets of ligand–protein complexes can 
recognize subtle patterns that classical functions miss, improving prediction accuracy. Examples include Graph 
Neural Networks (GNNs) that capture 3D structural relationships and transformer-based models trained on 
PDBBind. 
• Pose prediction: AI models can directly predict binding poses with accuracy comparable to or exceeding 
traditional docking algorithms. 
• De novo drug design: Generative models, such as variational autoencoders (VAEs) and generative adversarial 
networks (GANs), can create novel ligands optimized for docking scores and drug-like properties. 
• Active learning pipelines: By iteratively combining docking with AI-driven molecular generation, researchers can 
explore chemical space more efficiently, focusing computational effort on the most promising candidates. 
The success of AlphaFold2 in protein structure prediction exemplifies how AI can revolutionize structural biology; 
similar breakthroughs are expected in docking. AI-enhanced docking may soon transition from supportive to 
central roles in rational drug design. 
 
6.3 Quantum Mechanics/Molecular Mechanics (QM/MM) Hybrid Methods 
Another frontier is the incorporation of quantum mechanical (QM) methods into docking workflows. Conventional 
docking often overlooks electronic effects such as charge transfer, polarization, and orbital interactions, which are 
critical for accurately modeling binding. 
• QM/MM approaches: These hybrid methods treat the active site quantum-mechanically while the surrounding 
environment is modeled with classical force fields. 
• Enhanced accuracy: QM/MM captures hydrogen bonding, π-πstacking, and metal coordination with higher 
fidelity. 
• Use cases: Particularly valuable in drug discovery targeting metalloenzymes, where classical docking often fails 
to account for metal–ligand interactions. 
Although computationally intensive, advances in algorithms and hardware (e.g., GPU acceleration) are making 
QM/MM more practical. In the future, routine incorporation of QM/MM into docking may dramatically improve 
predictions of binding energetics and specificity. 
 
6.4 High-Throughput and Cloud Computing 
The growing availability of cloud computing platforms is democratizing access to large-scale docking campaigns. 
Previously, exhaustive virtual screening of millions of compounds required access to supercomputers, but now: 
• Cloud-based docking: Platforms such as AWS, Google Cloud, and Microsoft Azure offer scalable solutions for 
virtual screening without the need for in-house HPC clusters. 
• Distributed computing initiatives: Projects like Folding home and OpenPandemics harness crowdsourced 
computational resources to accelerate drug discovery. 
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• Integration with AI: Cloud systems can host integrated pipelines combining docking, machine learning, and 
ADMET prediction for end-to-end drug discovery. 
During the COVID-19 pandemic, cloud-enabled docking campaigns screened billions of molecules against SARS-
CoV-2 proteins, underscoring the value of such infrastructure for rapid response in global health emergencies. The 
trend toward accessible, high-throughput docking at scale will continue to grow, particularly in academia and small 
biotech startups. 
 
6.5 Multi-Target Docking 
The traditional “one drug, one target” paradigm is increasingly being replaced by recognition of polypharmacology, 
where drugs interact with multiple targets to achieve therapeutic effects. Molecular docking is adapting to this 
complexity through multi-target docking approaches. 
• Polypharmacology prediction: By docking ligands against a panel of proteins, researchers can identify potential 
off-target effects or design drugs with multi-target efficacy. 
• Network pharmacology integration: Docking can be combined with systems biology approaches to map drug–
target interactions across entire pathways or disease networks. 
• Examples: 
a. In cancer therapy, docking has been used to design kinase inhibitors that simultaneously target multiple signaling 
pathways, reducing resistance. 

b. In neurological disorders, multi-target ligands for GPCR families are being developed to address complex, 
multifactorial disease mechanisms. 
This shift toward network-based drug discovery highlights the evolving role of docking from single-target 
predictions to systems-level insights. 
 
6.6 Other Emerging Directions 
Beyond the major trends above, several additional innovations are shaping the future of docking: 
• Fragment-based docking: Small chemical fragments are docked and then grown or linked into larger molecules, 
improving sampling of chemical space. 
• Cryo-EM integration: The explosion of high-resolution cryo-EM structures enables docking into more 
physiologically relevant conformations of large protein complexes. 
• Personalized docking: With the growth of precision medicine, patient-specific protein variants (e.g., oncogenic 
mutations) can be modeled to predict individual drug responses. 
• Green computing: Advances in energy-efficient algorithms and hardware will reduce the carbon footprint of 
large-scale docking campaigns. 
 
Future developments in molecular docking will be characterized by integration, scalability, and personalization. 
By merging MD simulations, AI-driven scoring, QM/MM accuracy, and cloud-enabled high-throughput screening, 
docking will evolve into a comprehensive and reliable predictor of drug efficacy. Moreover, its application in multi-
target and personalized medicine reflects the broader shift in drug discovery toward holistic and patient-centered 
approaches. 
Thus, while docking in its current form remains limited by simplifications, its future is poised for transformative 
growth, with the potential to accelerate drug discovery, reduce attrition rates, and contribute to the development 
of next-generation therapeutics. 
 

7. Conclusion 
 
Molecular docking has established itself as a central technique in structure-based drug discovery, offering 
invaluable insights into ligand–receptor interactions and enabling rational drug design. While current methods 
face challenges such as limited accuracy in scoring functions and insufficient treatment of protein flexibility, 
advances in artificial intelligence, molecular dynamics, and quantum-based methods are rapidly bridging these 
gaps. The integration of docking with experimental validation and multi-disciplinary approaches promises to 
accelerate the discovery of safer and more effective therapeutics in the future. 
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