Nasal Route: A Suitable Choice For Delivering Drug Having Low Bioavailability
DOI:
https://doi.org/10.53555/ejac.v19i1.1127Keywords:
Intravenous, Bioavailability, Rapid, Mucosa, Absorptions, Nasal Drug Delivery.Abstract
The nasal route for drug administration is becoming an effective alternative for drugs with low bioavailability. Unlike oral and intravenous methods, which can suffer from issues like first-pass metabolism, poor gastrointestinal absorption, and rapid clearance, nasal delivery enables drugs to be absorbed directly into the bloodstream. This method avoids the digestive system and liver, thus improving the bioavailability of medications that are otherwise poorly absorbed or heavily metabolized. Nasal formulations use the nasal cavity's rich blood supply and large surface area for efficient drug absorption. They come in various forms: solutions for quick absorption, suspensions for poorly soluble drugs, powders that need a delivery device and gels that provide prolonged contact with the nasal mucosa. The nasal route offers several advantages, including bypassing the digestive system and liver, rapid absorption, noninvasiveness, ease of use, and targeted treatment for nasal conditions. Overall, it presents a practical and effective option for certain medications.
References
Krishnamoorthy R, Ashim K. Mitra, Prodrugs for nasal drug delivery. Advanced Drug Delivery Reviews. 1998; 29:135-146.
Chien YW, Su KSE, Chang SF. Nasal Systemic Drug Delivery, Ch. 1, Marcel-Dekker, New York, 1989; 1-77.
Kisan R Jadhav, Manoj N Gambhire, Ishaque M Shaikh, Vilarsrao J Kadam, Sambjahi S Pisal. Nasal Drug Delivery System-Factors Affecting and Applications, Current Drug Therapy, 2007; 2:27-38.
Mahalaxmi Rathananand, Kumar DS, Shirwaikar A, Ravi Kumar, Sampath Kumar D. Preparation of Mucoadhesive Microspheres for Nasal Delivery by Spray Drying, Indian Journal of Pharmaceutical Sciences. 2007; 652.
Duquesnoy C, Mamet JP, Sumner D, Fuseau E. Comparative clinical pharmacokinetics of single doses of sumatriptan following subcut anus, oral, rect al and intranasal administration. Eur J Pharm Sci. 1998; 6:99- 104.
Hicke A.J., Pharmaceutical Inhalation Aerosol Technology, 2nd ed Marcel Dekker, Inc: NewYork, 2004.
llum L. Nasal drug delivery-possibilities, problems and solutions. J Control Release. 2003; 87: 187–198.
Krishnamoorthy R, Ashim K. Mitra, Prodrugs for nasal drug delivery. Advanced Drug Delivery Reviews. 1998; 29:135-146.
Aulton ME. Pharmaceutics – The science of dosage form design, Churchill Livingston. 2002; 494.
Hirai S, Yashiki T, Mima H. Effect of surfactants on nasal absorption of insulin in rats, Int. J. Pharm. 1981; 9:165-171.
Kadam SS, Mahadik KR, Pawar AP, Paradkar AR. Transnasal delivery of peptides – a review, The East. Pharm. 1993; 47-49.
Mygind N. Scanning electron microscopy of the human nasal mucosa. Rhinology 1975; 13: 57-75.
Watanabe K, Watanabe I, Saito Y, Mizuhira V. Characteristics of capillary permeability in nasal mucosa. Ann Otol Rhinol Laryngol 1980; 89: 377-382.
Geurkink N. Nasal anatomy, physiology, and function. J Allergy Clin Immunol 1983; 72: 123-128.
Brofeldt S, Secher C, Mygind N. Biophysical characteristics of nasal secretions: A preliminary report. Eur J Respir Dis 1983; 64: 436-440.
Bende M. Studies of blood flow in the human nasal mucosa. Eur J Respir Dis 1983; 64: 400-402.
Bisgaard H, Krogsgaard O, Mygind N. Measurement of secretion in nasal lavage. Clin Sci 1987; 73: 217-222.
Dawes JDK, Prichard M. Studies of the vascular arrangement of the nose. J Anat 1953; 87: 311-322.
Cauna N, Hinderer KH. Fine structure of blood vessels of the human nasal respiratory mucosa. Ann Otol Rhinol Laryngol 1969; 78: 865-885.
Pomponi M, Giacobini E, Brufani M. Present state and future development of the therapy of Alzheimer’s disease. Aging 1990; 2: 125-153.
Mygind N, Anggard A. Anatomy and physiology of the nosepathophysiology alterations in allergic rhinitis. Clin Rev Allergy 1984; 2: 173-188.
Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci 2000; 11: 1-18.
Schipper NG, Verhoef JC, Merkus FW. The nasal mucocilliaryclearance: relevance to nasal drug delivery. Pharm Res 1991; 8: 807-814.
Mathison S, Nagilla R, Kompella UB. Nasal route for direct delivery of solutes to the central nervous system: fact or fiction. J Drug Target 1998; 5: 415-441.
Chien YW, Chang SF. Intranasal drug delivery for systemic medication. Crit Rev Ther Drug Carrier Syst 1987; 4: 67-194.
Hehar SS, Mason JD, Stephen AB, et al. Twenty four hour ambulatory nasal pH monitoring. Clin Otolaryngol 1999; 24: 24-25.
Reed CJ. Drug metabolism in the nasal cavity: relevance to toxicology. Drug Metab Rev 1993; 25: 173-205.
Dahl AR, Lewis JL. Respiratory tract uptake of inhalants and metabolism of xenobiotics. Annu Rev Pharmacol Toxicol 1993; 32: 383-407.
Lewis JL, Nikula KJ, Novak R, Dahl AR. Comparative localization of carboxyl esterase in F344 rat, beagle dog and human nasal tissue. Anat Rec 1994; 239: 55-64.
Aceto A, Llio, Angelucci S, et al. Glutathione transferases in human nasal mucosa. Arch Toxicol 1989; 63: 427-431.
Krishna NS, Getchell TV, Awasthi YC, Gatechell ML, Dhooper N. Age and gender-related trends in the expression of glutathione Stransferases in human nasal mucosa. Ann Otol Rhinol Laryngol 1995; 104: 812-822.
HUANG, C. H., KIMURA, R., NASSAR, R. B., & HUSSAIN, A (1985). Mechanism of nasal absorption of drugs I: Physicochemical parameters influencing the rate of in situ nasal absorption of drugs in rats. Journal of pharmaceutical sciences,74(6), 608-611.
SHINICHIRO, H., TAKATSUKA, Y., & HIROYUKI, M. (1981). Mechanisms for the enhancement of the nasal absorption of insulin by surfactants. International Journal of Pharmaceutics, 9(2), 173-184.
DUVVURI, S., MAJUMDAR, S., & MITRA, A. K. (2003). Drug delivery to the retina: challenges and opportunities. Expert opinion on biological therapy, 3(1), 45-56.
TOUITOU, E., & BARRY, B. W. (Eds.). (2006). Enhancement in drug delivery. CRC Press.
DAVIS, S. S., & ILLUM, L. (2003). Absorption enhancers for nasal drug delivery. Clinical Pharmacokinetics, 42(13), 1107-1128.
MAHDI, M. H., CONWAY, B. R., & SMITH, A. M. (2015). Development of mucoadhesive sprayable gellan gum fluid gels. International Journal of Pharmaceutics, 488(1), 12-19.
HUSSEIN, N. R., (2014). Bioadhesive microparticles and liposomes of anti-Parkinson drugs for nasal delivery. PhD thesis, University of Central Lancashire.
KUBLIK, H., & VIDGREN, M. T., (1998). Nasal delivery systems and their effect on deposition and absorption. Advanced Drug Delivery Reviews, 29, 157-177.
RATHBONE, M. J., HADGRAFT, J., & ROBERTS, M. S. (Eds.). (2002). Modified-release drug delivery technology. CRC Press.
NAKAMURA, K., TANAKA, Y., & SAKURAI, M. (1996) Dynamic mechanical properties of aqueous gellan solutions in the sol–gel transition region Carbohydrate Polymers, 30. 101–108.
ANDO, T., MAITANI, Y., YAMAMOTO, T., TAKAYAMA, K., & NAGAI, T. (1998). Nasal insulin delivery in rabbits using soybean-derived sterylglucoside and sterol mixtures as novel enhancers in suspension dosage forms. Biological and Pharmaceutical Bulletin, 21(8), 862-865
AIKAWA, K., MATSUMOTO, K., UDA, H., TANAKA, S., SHIMAMURA, H., ARAMAKI, Y., & TSUCHIYA, S. (1998). Prolonged release of drug from o/w emulsion and residence in rat nasal cavity. Pharmaceutical Development & Technology, 3(4), 461-469.
TAMILVANAN, S. (2008). Oil-in-Water nanosized emulsions: Medical Applications. Pharmaceutical Sciences Encyclopedia. John Wiley & Sons, Inc.
KARARLI, T. T., NEEDHAM, T. E., GRIFFIN, M., SCHOENHARD, G., FERRO, L. J., & ALCORN, L. (1992). Oral delivery of a renin inhibitor compound using emulsion formulations. Pharmaceutical Research, 9(7), 888-893.
Kararli, T. T., Needham, T. E., Schoenhard, G., Baron, D. A., Schmidt, R. E., Katz, B., & Belonio, B. (1992). Enhancement of nasal delivery of a renin inhibitor in the rat using emulsion formulations. Pharmaceutical Research, 9(8), 1024-1028.
ZHANG, X., & WU, B. (2015). Submicron lipid emulsions: a versatile platform for drug delivery. Current Drug Metabolism, 16(3), 211-220.
SHINDE, R. L., BHARKAD, G. P., & DEVARAJAN, P. V. (2015). Intranasal microemulsion for targeted nose to brain delivery in neurocysticercosis: role of docosahexaenoic acid. European Journal of Pharmaceutics and Biopharmaceutics, 96, 363-379.
YADAV, S., GATTACCECA, F., PANICUCCI, R., & AMIJI, M. M. (2015). Comparative biodistribution and pharmacokinetic analysis of cyclosporine-a in the brain upon intranasal or intravenous administration in an oil-in-water nanoemulsion formulation. Molecular Pharmaceutics, 12(5), 1523-1533.
Leopold, D. A. THE RELATIONSHIP BETWEEN NASAL ANATOMY AND HUMAN OLFACTION*??? The Laryngoscope 1988, 98 (11), 1232???1238.
Illum, L. Is Nose-to-Brain Transport of Drugs in Man a Reality? Journal of Pharmacy and Pharmacology 2004, 56 (1), 3-17.
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent Advances in Carrier Mediated Nose-to-Brain Delivery of Pharmaceutics. European Journal of Pharmaceutics and Biopharmaceutics.
Casettari, L.; Illum, L. Chitosan in Nasal Delivery Systems for Therapeutic Drugs. Journal of Controlled Release 2014, 190, 189- 200.
Pardeshi, C. V.; Belgamwar, V. S. Direct Nose to Brain Drug Delivery via Integrated Nerve Pathways Bypassing the BloodBrain Barrier: An Excellent Platform for Brain Targeting. Expert Opinion on Drug Delivery 2013, 10 (7).
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent Advances in Carrier Mediated Nose-to-Brain Delivery of Pharmaceutics. European Journal of Pharmaceutics and Biopharmaceutics. 2018, pp 337-362.
Enrique Cometto-Muñiz, J.; Simons, C. Trigeminal Chemesthesis. In Handbook of Olfaction and Gustation: Third Edition; 2015; pp 1089-1112. https://doi.org/10.1002/9781118971758.ch50.
Johnson, N. J.; Hanson, L. R.; Frey, W. H. Trigeminal Pathways Deliver a Low Molecular Weight Drug from the Nose to the Brain and Orofacial Structures. Molecular Pharmaceutics 2010, 7 (3), 884-893.
Dhuria, S. V.; Hanson, L. R.; Frey, W. H. Intranasal Delivery to the Central Nervous System: Mechanisms and Experimental Considerations. Journal of pharmaceutical sciences 2010, 99 (4), 1654-1673
Nicholls, A. R.; Holt, R. I. G. Growth Hormone and Insulin-Like Growth Factor-1. Frontiers of Hormone Research 2016, 47, 101- 114.
Puttipipatkhachorn, S.; Nunthanid, J.; Yamamoto, K.; Peck, G. E. Drug Physical State and Drug-Polymer Interaction on Drug Release from Chitosan Matrix Films. Journal of Controlled Release 2001, 75 (1-2), 143-153. https://doi.org/10.1016/S0168-3659(01)00389-3.
Mistry, A.; Stolnik, S.; Illum, L. Nose-to-Brain Delivery: Investigation of the Transport of Nanoparticles with Different Surface Characteristics and Sizes in Excised Porcine Olfactory Epithelium. Molecular Pharmaceutics 2015.
Chang, S. F.; Chien, Y. W. Nasal Drug Delivery. In Treatise on Controlled Drug Delivery: Fundamentals-OptimizationApplications; 2017.
Gaumet, M.; Vargas, A.; Gurny, R.; Delie, F. Nanoparticles for Drug Delivery: The Need for Precision in Reporting Particle Size Parameters. European Journal of Pharmaceutics and Biopharmaceutics. 2008.
Önerci, T. M. Nasal Physiology and Pathophysiology of Nasal Disorders; 2013. https://doi.org/10.1007/978-3-642-37250-6.
Di Gioia, S.; Trapani, A.; Mandracchia, D.; De Giglio, E.; Cometa, S.; Mangini, V.; Arnesano, F.; Belgiovine, G.; Castellani, S.; Pace, L.; et al. Intranasal Delivery of Dopamine to the Striatum Using Glycol Chitosan/Sulfobutylether-β-Cyclodextrin Based Nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics 2015, 94 (1), 180-193. https://doi.org/10.1016/j.ejpb.2015.05.019.
Rassu, G.; Soddu, E.; Cossu, M.; Brundu, A.; Cerri, G.; Marchetti, N.; Ferraro, L.; Regan, R. F.; Giunchedi, P.; Gavini, E.; et al. Solid Microparticles Based on Chitosan or Methyl-β-Cyclodextrin: A First Formulative Approach to Increase the Nose-to-Brain Transport of Deferoxamine Mesylate. Journal of Controlled Release 2015, 201, 68-77.
Noback, M. L.; Harvati, K.; Spoor, F. Climate-Related Variation of the Human Nasal Cavity. American journal of physical anthropology 2011.
Dey, S.; Mahanti, B.; Mazumder, B.; Malgope, A.; Sandeepan, A.; Dasgupta. Nasal Drug Delivery: An Approach of Drug Delivery through Nasal Route. Der Chemica Sinica 2011, 2 ((3)), 94-106
Pezron, I.; Mitra, A. K.; Duvvuri, S.; Tirucherai, G. S. Prodrug Strategies in Nasal Drug Delivery. Expert Opinion on Therapeutic Patents 2004. https://doi.org/10.1517/13543776.12.3.331.
Khan, A. R.; Liu, M.; Khan, M. W.; Zhai, G. Progress in Brain Targeting Drug Delivery System by Nasal Route. Journal of Controlled Release. 2017, pp 364-389.
Frey WH, Liu J, Chen X, Thorne RG, Fawcett JR, Ala TA. Delivery of 125I-NGF to the brain via the olfactory route. Drug Delivery 1997; 4: 87-92.
Chen XQ, Fawcett JR, Rahman YE, Ala TA, Frey WH. Delivery of nerve growth factor to the brain via the olfactory pathway. J Alzheimers Dis 1998; 1: 35-44.
Frey WH, Thorne RG, Pronk G. Delivery of Insulin like growth factor-1 to the brain and spinal cord along olfactory and trigeminal pathways following intranasal administration: a noninvasive method for bypassing the blood brain barrier. Soc Neurosci Abstract 2000; 26: 1365-1370.
Kucheryanu VG, Kryzhanovsky GN, Kudrin VS, Yurasov VV, Zhigaltsev IV, Intranasal fibroblast growth factors: delivery into the brain exerts antiparkinsonian effect in mice, in 26th Int. Symp on Controlled Release of Bioactive Materials (Controlled Release Society Inc., Boston MA,) 1999; 643.
Gozes I, Bardea A, Reshef A, et al. Neuroprotective strategy for Alzheimer disease: intranasal administration of a fatty neuropeptide. Proc Natl Acad Sci USA 1996; 93: 427-432.
Pietrowsky R, Struben C, Molle M, Fehm HL, Born J. Brain potential changes after intranasal administration vs. intravenous administration of vasopressin: evidence for a direct nose-brain pathway for peptide effects in humans. Biol Psychiatry 1996; 39: 332-340.
Pietrowsky R, Thieman A, Kern W, Fehm HL, Born JA. A nosebrain pathway for psychotropic peptides: evidence from a brain evoked potential study with cholecystokinin. Psychoneuroendocrinology 1996; 21: 559-572.
Fehm HL, Smolnik R, Kern W, McGregor GP, Bickel U, Born J. The melanocortin melanocyte-stimulating hormone/adrenocotropin (4-10) decreases body fat in humans. J Clin Endocrinol Metab 2001; 86: 1144-1148.
Kern W, Born J, Schreiber H, Fehm HL. Central nervous system effects of intranasally administered insulin during euglycemia in men. Diabetes 1999; 48: 557-563.
Chow HS, Chen Z, Matsuura GT. Direct transport of cocaine from the nasal cavity to the brain following intranasal cocaine administration in rats. J Pharm Sci 1999; 88: 754-758.
Dahlin M, Bergman U, Jansson B, Bjork E, Brittebo E. Transfer of dopamine in the olfactory pathway following nasal administration in mice. Pharm Res 2000; 17: 737-742.
Anand KTC, David GFX, Umberkoman B, Saini KD. Uptake of radioradioactivity by body fluids and tissues in rhesus monkeys after intravenous injection or intranasal spray of tritium-labelled estradiol and progesterone. Curr Sci 1974; 43: 435-439.
Sakane T, Akizuki M, Yamashita S, Nadai T, Hashida M, Sezaki H. The transport of cephalexin to the cerebrospinal fluid directly from the nasal cavity. J Pharm Pharmacol 1991; 43: 449-451.
Talegaonkar S, Mishra PR. Intranasal delivery: An approach to bypass the blood brain barrier. Indian J Pharmacol 2004; 36(3): 140-147.