NOVEL THERAPEUTIC AGENT TRANSFER SYSTEM FOR TREATING NEUROPSYCHOLOGICAL DISORDER
DOI:
https://doi.org/10.53555/ejac.v19i1.1133Keywords:
Neuropsychological, Nanoparticles; Alzheimer’s, Parkinson’s, Blood Brain Interfaces, Neurodengerative, stem cells.Abstract
The demand for development of therapeutic techniques for the curement of ND disorders increased in recent years due to an ageing population that is still growing. Neuronal death is commonly linked with ND, defined by progressive loss of neuronal structure or activity. Despite the testing of various medications, there is presently no one curementthat can stop the progression of these conditions or cure them. BBB, BCFB, and P-glycoproteins are some of the key potential causes of therapy failure in ND illnesses. By employing nanotechnology and creating nanomaterial that improves transfer of active therapeutic agent entities, current breakthroughs in nanotechnology offer chances to get over the constraints outlined. The local distribution of pharmaceuticals, binding sites-mediated transcytosis, and other disruptions are some of fundamental and emerging ways to overcome therapeutic agent transfer interfaces. The use of NPs recently explored to increase effectiveness of medicine transfer. Nano engineered particles can penetrate BBB and exhibit reduced invasiveness. As an illustration, consider the inorganic, magnetic, polymeric, and carbon NPs that have been designed to increase the effectiveness of medication administration. There are still various problems that need to be resolved despite the large number of articles that have been published in this field in order to successfully treat ND illnesses. Here, they are discussed.
References
Abbott NJ, Pizzo ME, Preston JE, Janigro D, Thorne RG. The role of brain barriers in fluid movement in the CNS: is there a ‘glymphatic’ system? Acta Neuropathol [Internet]. 2018 Mar 10;135(3):387–407. Available from: http://link.springer.com/10.1007/s00401-018-1812-4
Sweeney MD, Sagare AP, Zlokovic B V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol [Internet]. 2018 Mar 29;14(3):133–50. Available from: http://www.nature.com/articles/nrneurol.2017.188
Stockwell J, Abdi N, Lu X, Maheshwari O, Taghibiglou C. Novel Central Nervous System Drug Delivery Systems. Chem Biol Drug Des [Internet]. 2014 May;83(5):507–20. Available from: https://onlinelibrary.wiley.com/doi/10.1111/cbdd.12268
Oller-Salvia B, Sánchez-Navarro M, Giralt E, Teixidó M. Blood–brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev [Internet]. 2016;45(17):4690–707. Available from: http://xlink.rsc.org/?DOI=C6CS00076B
Dong X. Current Strategies for Brain Drug Delivery. Theranostics [Internet]. 2018;8(6):1481–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29556336
A. Misra, S. Ganesh, A. Shahiwala and SPS. Drug delivery to the central nervous system: a review. J Pharm Pharm Sci. 2003;6:252–73.
Zhang T-T, Li W, Meng G, Wang P, Liao W. Strategies for transporting nanoparticles across the blood–brain barrier. Biomater Sci [Internet]. 2016;4(2):219–29. Available from: http://xlink.rsc.org/?DOI=C5BM00383K
Vieira D, Gamarra L. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. Int J Nanomedicine [Internet]. 2016 Oct;Volume 11:5381–414. Available from: https://www.dovepress.com/getting-into-the-brain-liposome-based-strategies-for-effective-drug-de-peer-reviewed-article-IJN
Bozdağ Pehlivan S. Nanotechnology-Based Drug Delivery Systems for Targeting, Imaging and Diagnosis of Neurodegenerative Diseases. Pharm Res [Internet]. 2013 Oct 20;30(10):2499–511. Available from: http://link.springer.com/10.1007/s11095-013-1156-7
Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis [Internet]. 2010 Jan;37(1):13–25. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996109002083
Tosi G, Costantino L, Ruozi B, Forni F, Vandelli MA. Polymeric nanoparticles for the drug delivery to the central nervous system. Expert Opin Drug Deliv [Internet]. 2008 Feb 5;5(2):155–74. Available from: http://www.tandfonline.com/doi/full/10.1517/17425247.5.2.155
Silva GA. Nanotechnology approaches for the regeneration and neuroprotection of the central nervous system. Surg Neurol [Internet]. 2005 Apr;63(4):301–6. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0090301904003982
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother [Internet]. 2019 Mar;111:666–75. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0753332218361638
Teleanu D, Chircov C, Grumezescu A, Volceanov A, Teleanu R. Blood-Brain Delivery Methods Using Nanotechnology. Pharmaceutics [Internet]. 2018 Dec 11;10(4):269. Available from: http://www.mdpi.com/1999-4923/10/4/269
Vashist A, Kaushik A, Vashist A, Bala J, Nikkhah-Moshaie R, Sagar V, et al. Nanogels as potential drug nanocarriers for CNS drug delivery. Drug Discov Today [Internet]. 2018 Jul;23(7):1436–43. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1359644617305767
Ran W, Xue X. Theranostical application of nanomedicine for treating central nervous system disorders. Sci China Life Sci [Internet]. 2018 Apr 2;61(4):392–9. Available from: http://link.springer.com/10.1007/s11427-017-9292-7
Re F, Gregori M, Masserini M. Nanotechnology for neurodegenerative disorders. Maturitas [Internet]. 2012 Sep;73(1):45–51. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22261367
Alyautdin R, Khalin I, Nafeeza MI, Haron MH, Kuznetsov D. Nanoscale drug delivery systems and the blood-brain barrier. Int J Nanomedicine [Internet]. 2014;9:795–811. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24550672
Fernández-Concha D, Gilman RH, Gilman JB. A home nutritional rehabilitation programme in a Peruvian peri-urban shanty town (pueblo joven). Trans R Soc Trop Med Hyg [Internet]. 1991;85(6):809–13. Available from: http://www.ncbi.nlm.nih.gov/pubmed/1801362
Ibrahim MM, Gabr MT. Multitarget therapeutic strategies for Alzheimer’s disease. Neural Regen Res [Internet]. 2019 Mar;14(3):437–40. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30539809
Daniele S, Giacomelli C, Martini C. Brain ageing and neurodegenerative disease: The role of cellular waste management. Biochem Pharmacol [Internet]. 2018 Dec;158:207–16. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30393045
de la Torre C, Ceña V. The Delivery Challenge in Neurodegenerative Disorders: The Nanoparticles Role in Alzheimer’s Disease Therapeutics and Diagnostics. Pharmaceutics [Internet]. 2018 Oct 17;10(4):190. Available from: http://www.mdpi.com/1999-4923/10/4/190
Saraiva C, Praça C, Ferreira R, Santos T, Ferreira L, Bernardino L. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. J Control Release [Internet]. 2016 Aug 10;235:34–47. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27208862
Liu EY, Cali CP, Lee EB. RNA metabolism in neurodegenerative disease. Dis Model Mech [Internet]. 2017 May 1;10(5):509–18. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28468937
Karthivashan G, Ganesan P, Park S-Y, Kim J-S, Choi D-K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv [Internet]. 2018 Nov;25(1):307–20. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29350055
Van Dam D, De Deyn PP. Animal models in the drug discovery pipeline for Alzheimer’s disease. Br J Pharmacol [Internet]. 2011 Oct;164(4):1285–300. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21371009
Danysz W, Parsons CG. Alzheimer’s disease, β-amyloid, glutamate, NMDA receptors and memantine--searching for the connections. Br J Pharmacol [Internet]. 2012 Sep;167(2):324–52. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22646481
Revett TJ, Baker GB, Jhamandas J, Kar S. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology. J Psychiatry Neurosci [Internet]. 2013 Jan;38(1):6–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22894822
Mehta M, Adem A, Sabbagh M. New Acetylcholinesterase Inhibitors for Alzheimer’s Disease. Int J Alzheimers Dis [Internet]. 2012;2012:1–8. Available from: http://www.hindawi.com/journals/ijad/2012/728983/
Jordão JF, Ayala-Grosso CA, Markham K, Huang Y, Chopra R, McLaurin J, et al. Antibodies Targeted to the Brain with Image-Guided Focused Ultrasound Reduces Amyloid-β Plaque Load in the TgCRND8 Mouse Model of Alzheimer’s Disease. El Khoury J, editor. PLoS One [Internet]. 2010 May 11;5(5):e10549. Available from: https://dx.plos.org/10.1371/journal.pone.0010549
Modi G, Pillay V, Choonara YE. Advances in the treatment of neurodegenerative disorders employing nanotechnology. Ann N Y Acad Sci [Internet]. 2010 Jan;1184:154–72. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20146696
Adhikary RR, Sandbhor P, Banerjee R. Nanotechnology platforms in Parkinson’s Disease. ADMET DMPK [Internet]. 2015 Sep 5;3(3). Available from: http://pub.iapchem.org/ojs/index.php/admet/article/view/189
Maiti P, Manna J, Dunbar GL. Current understanding of the molecular mechanisms in Parkinson’s disease: Targets for potential treatments. Transl Neurodegener [Internet]. 2017;6:28. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29090092
Ansorena E, Casales E, Aranda A, Tamayo E, Garbayo E, Smerdou C, et al. A simple and efficient method for the production of human glycosylated glial cell line-derived neurotrophic factor using a Semliki Forest virus expression system. Int J Pharm [Internet]. 2013 Jan 2;440(1):19–26. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22580212
André EM, Delcroix GJ, Kandalam S, Sindji L, Montero-Menei CN. A Combinatorial Cell and Drug Delivery Strategy for Huntington’s Disease Using Pharmacologically Active Microcarriers and RNAi Neuronally-Committed Mesenchymal Stromal Cells. Pharmaceutics [Internet]. 2019 Oct 12;11(10):526. Available from: https://www.mdpi.com/1999-4923/11/10/526
Bernis ME, Babila JT, Breid S, Wüsten KA, Wüllner U, Tamgüney G. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathol Commun [Internet]. 2015 Nov 26;3:75. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26612754
Jansen AHP, Batenburg KL, Pecho-Vrieseling E, Reits EA. Visualization of prion-like transfer in Huntington’s disease models. Biochim Biophys acta Mol basis Dis [Internet]. 2017 Mar;1863(3):793–800. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28040507
Liu X-G, Lu S, Liu D-Q, Zhang L, Zhang L-X, Yu X-L, et al. ScFv-conjugated superparamagnetic iron oxide nanoparticles for MRI-based diagnosis in transgenic mouse models of Parkinson’s and Huntington’s diseases. Brain Res [Internet]. 2019 Mar 15;1707:141–53. Available from: http://www.ncbi.nlm.nih.gov/pubmed/30481502
Ramaswamy S, Kordower JH. Gene therapy for Huntington’s disease. Neurobiol Dis [Internet]. 2012 Nov;48(2):243–54. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22222669
Machtoub L and Kasugai Y. Amyotrophic Lateral Sclerosis: Advances and Perspectives of Neuronanomedicine, CRC press. 2016.
Aulić S, Bolognesi ML, Legname G. Small-Molecule Theranostic Probes: A Promising Future in Neurodegenerative Diseases. Int J Cell Biol [Internet]. 2013;2013:1–19. Available from: http://www.hindawi.com/journals/ijcb/2013/150952/
Masoudi Asil S, Ahlawat J, Guillama Barroso G, Narayan M. Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases. Biomater Sci [Internet]. 2020;8(15):4109–28. Available from: http://xlink.rsc.org/?DOI=D0BM00809E
Ballabh P, Braun A, Nedergaard M. The blood–brain barrier: an overview. Neurobiol Dis [Internet]. 2004 Jun;16(1):1–13. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0969996103002833
Zlokovic B V. The Blood-Brain Barrier in Health and Chronic Neurodegenerative Disorders. Neuron [Internet]. 2008 Jan;57(2):178–201. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0896627308000342
Akhtar A, Andleeb A, Waris TS, Bazzar M, Moradi A-R, Awan NR, et al. Neurodegenerative diseases and effective drug delivery: A review of challenges and novel therapeutics. J Control Release [Internet]. 2021 Feb;330:1152–67. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0168365920306702
Ueno M, Chiba Y, Murakami R, Matsumoto K, Kawauchi M, Fujihara R. Blood–brain barrier and blood–cerebrospinal fluid barrier in normal and pathological conditions. Brain Tumor Pathol [Internet]. 2016 Apr 26;33(2):89–96. Available from: http://link.springer.com/10.1007/s10014-016-0255-7
Solár P, Zamani A, Kubíčková L, Dubový P, Joukal M. Choroid plexus and the blood–cerebrospinal fluid barrier in disease. Fluids Barriers CNS [Internet]. 2020 Dec 6;17(1):35. Available from: https://fluidsbarrierscns.biomedcentral.com/articles/10.1186/s12987-020-00196-2
Sonar SA, Lal G. Overview of Mechanisms Underlying Neuroimmune Diseases. In 2019. p. 3–62. Available from: https://link.springer.com/10.1007/978-3-030-19515-1_1
Ghersi-Egea J-F, Strazielle N, Catala M, Silva-Vargas V, Doetsch F, Engelhardt B. Molecular anatomy and functions of the choroidal blood-cerebrospinal fluid barrier in health and disease. Acta Neuropathol [Internet]. 2018 Mar 24;135(3):337–61. Available from: http://link.springer.com/10.1007/s00401-018-1807-1
van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood–brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat [Internet]. 2015 Mar;19:1–12. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1368764615000126
Khaitan D, Reddy PL, Narayana DS, Ningaraj NS. Recent advances in understanding of blood–brain tumor barrier (BTB) permeability mechanisms that enable better detection and treatment of brain tumors. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems [Internet]. Elsevier; 2018. p. 673–88. Available from: https://linkinghub.elsevier.com/retrieve/pii/B9780128136898000173
Pandit R, Chen L, Götz J. The blood-brain barrier: Physiology and strategies for drug delivery. Adv Drug Deliv Rev [Internet]. 2020;165–166:1–14. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X19302388
V A, Cutinho LI, Mourya P, Maxwell A, Thomas G, Rajput BS. Approaches for encephalic drug delivery using nanomaterials: The current status. Brain Res Bull [Internet]. 2020 Feb;155:184–90. Available from: https://linkinghub.elsevier.com/retrieve/pii/S036192301830950X
Marianecci C, Rinaldi F, Hanieh PN, Di Marzio L, Paolino D, Carafa M. Drug delivery in overcoming the blood–brain barrier: role of nasal mucosal grafting. Drug Des Devel Ther [Internet]. 2017 Jan;Volume11:325–35. Available from: https://www.dovepress.com/drug-delivery-in-overcoming-the-bloodndashbrain-barrier-role-of-nasal--peer-reviewed-article-DDDT
Bors L, Erdő F. Overcoming the Blood–Brain Barrier. Challenges and Tricks for CNS Drug Delivery. Sci Pharm [Internet]. 2019 Feb 28;87(1):6. Available from: https://www.mdpi.com/2218-0532/87/1/6
Burgess A, Hynynen K. Noninvasive and Targeted Drug Delivery to the Brain Using Focused Ultrasound. ACS Chem Neurosci [Internet]. 2013 Apr 17;4(4):519–26. Available from: https://pubs.acs.org/doi/10.1021/cn300191b
Denora N, Trapani A, Laquintana V, Lopedota A, Trapani G. Recent Advances in Medicinal Chemistry and Pharmaceutical Technology- Strategies for Drug Delivery to the Brain. Curr Top Med Chem [Internet]. 2009 Feb 1;9(2):182–96. Available from: http://www.eurekaselect.com/openurl/content.php?genre=article&issn=1568-0266&volume=9&issue=2&spage=182
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev [Internet]. 2012 May;64(7):614–28. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X11002791
Hanson LR, Frey WH. Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci [Internet]. 2008 Dec 10;9(S3):S5. Available from: https://bmcneurosci.biomedcentral.com/articles/10.1186/1471-2202-9-S3-S5
Bhujbal S V., de Vos P, Niclou SP. Drug and cell encapsulation: Alternative delivery options for the treatment of malignant brain tumors. Adv Drug Deliv Rev [Internet]. 2014 Apr;67–68:142–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X14000118
Soni S, Ruhela RK, Medhi B. Nanomedicine in Central Nervous System (CNS) Disorders: A Present and Future Prospective. Adv Pharm Bull [Internet]. 2016 Sep 25;6(3):319–35. Available from: http://journals.tbzmed.ac.ir/APB/Abstract/APB_3669_20151120170920
Tseng T-C, Tao L, Hsieh F-Y, Wei Y, Chiu I-M, Hsu S. An Injectable, Self-Healing Hydrogel to Repair the Central Nervous System. Adv Mater [Internet]. 2015 Jun;27(23):3518–24. Available from: https://onlinelibrary.wiley.com/doi/10.1002/adma.201500762
Cembran A, Bruggeman KF, Williams RJ, Parish CL, Nisbet DR. Biomimetic Materials and Their Utility in Modeling the 3-Dimensional Neural Environment. iScience [Internet]. 2020 Jan;23(1):100788. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2589004219305334
Wang X, He J, Wang Y, Cui F-Z. Hyaluronic acid-based scaffold for central neural tissue engineering. Interface Focus [Internet]. 2012 Jun 6;2(3):278–91. Available from: https://royalsocietypublishing.org/doi/10.1098/rsfs.2012.0016
Vissers C, Ming G, Song H. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Adv Drug Deliv Rev [Internet]. 2019 Aug;148:239–51. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0169409X19300237
Calori IR, Braga G, de Jesus P da CC, Bi H, Tedesco AC. Polymer scaffolds as drug delivery systems. Eur Polym J [Internet]. 2020 Apr;129:109621. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0014305719318531
Caicco MJ, Zahir T, Mothe AJ, Ballios BG, Kihm AJ, Tator CH, et al. Characterization of hyaluronan-methylcellulose hydrogels for cell delivery to the injured spinal cord. J Biomed Mater Res Part A [Internet]. 2013 May;101A(5):1472–7. Available from: https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.34454
de Pablo F, de la Rosa EJ. The developing CNS: a scenario for the action of proinsulin, insulin and insulin-like growth factors. Trends Neurosci [Internet]. 1995 Mar;18(3):143–50. Available from: https://linkinghub.elsevier.com/retrieve/pii/0166223695938922
Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov [Internet]. 2004 Aug;3(8):711–6. Available from: http://www.nature.com/articles/nrd1470
Hipp J, Atala A. Sources of Stem Cells for Regenerative Medicine. Stem Cell Rev [Internet]. 2008 Mar 20;4(1):3–11. Available from: http://link.springer.com/10.1007/s12015-008-9010-8
Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F., Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy [Internet]. 2006;8(4):315–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1465324906708817
Caplan AI, Hariri R. Body Management: Mesenchymal Stem Cells Control the Internal Regenerator. Stem Cells Transl Med [Internet]. 2015 Jul 1;4(7):695–701. Available from: https://academic.oup.com/stcltm/article/4/7/695-701/6397274
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol [Internet]. 2008 Sep;8(9):726–36. Available from: https://www.nature.com/articles/nri2395
Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F, et al. Human mesenchymal stem cells modulate B-cell functions. Blood [Internet]. 2006 Jan 1;107(1):367–72. Available from: https://ashpublications.org/blood/article/107/1/367/21754/Human-mesenchymal-stem-cells-modulate-Bcell
Krampera M, Pizzolo G, Aprili G, Franchini M. Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone [Internet]. 2006 Oct;39(4):678–83. Available from: https://linkinghub.elsevier.com/retrieve/pii/S8756328206004388
Spaggiari GM, Capobianco A, Becchetti S, Mingari MC, Moretta L. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood [Internet]. 2006 Feb 15;107(4):1484–90. Available from: https://ashpublications.org/blood/article/107/4/1484/133705/Mesenchymal-stem-cellnatural-killer-cell
Lai RC, Arslan F, Lee MM, Sze NSK, Choo A, Chen TS, et al. Exosome secreted by MSC reduces myocardial ischemia/reperfusion injury. Stem Cell Res [Internet]. 2010 May;4(3):214–22. Available from: https://linkinghub.elsevier.com/retrieve/pii/S187350610900141X
Phinney DG, Prockop DJ. Concise Review: Mesenchymal Stem/Multipotent Stromal Cells: The State of Transdifferentiation and Modes of Tissue Repair—Current Views. Stem Cells [Internet]. 2007 Nov 1;25(11):2896–902. Available from: https://academic.oup.com/stmcls/article/25/11/2896-2902/6402715
Yagi H, Soto-Gutierrez A, Parekkadan B, Kitagawa Y, Tompkins RG, Kobayashi N, et al. Mesenchymal Stem Cells: Mechanisms of Immunomodulation and Homing. Cell Transplant [Internet]. 2010 Jun 1;19(6–7):667–79. Available from: http://journals.sagepub.com/doi/10.3727/096368910X508762
Hsieh J-Y, Wang H-W, Chang S-J, Liao K-H, Lee I-H, Lin W-S, et al. Mesenchymal Stem Cells from Human Umbilical Cord Express Preferentially Secreted Factors Related to Neuroprotection, Neurogenesis, and Angiogenesis. Shi X-M, editor. PLoS One [Internet]. 2013 Aug 22;8(8):e72604. Available from: https://dx.plos.org/10.1371/journal.pone.0072604
Turano E, Scambi I, Virla F, Bonetti B, Mariotti R. Extracellular Vesicles from Mesenchymal Stem Cells: Towards Novel Therapeutic Strategies for Neurodegenerative Diseases. Int J Mol Sci [Internet]. 2023 Feb 2;24(3):2917. Available from: https://www.mdpi.com/1422-0067/24/3/2917
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant [Internet]. 2019 Aug 20;54(S2):789–92. Available from: https://www.nature.com/articles/s41409-019-0616-z
Gimona M, Pachler K, Laner-Plamberger S, Schallmoser K, Rohde E. Manufacturing of Human Extracellular Vesicle-Based Therapeutics for Clinical Use. Int J Mol Sci [Internet]. 2017 Jun 3;18(6):1190. Available from: http://www.mdpi.com/1422-0067/18/6/1190
Massa M, Croce S, Campanelli R, Abbà C, Lenta E, Valsecchi C, et al. Clinical Applications of Mesenchymal Stem/Stromal Cell Derived Extracellular Vesicles: Therapeutic Potential of an Acellular Product. Diagnostics [Internet]. 2020 Nov 24;10(12):999. Available from: https://www.mdpi.com/2075-4418/10/12/999