Applications of Artificial Intelligence in Microbiology: Advancements, Challenges, and Future Directions

Authors

  • J. Suriakumar
  • T. Murugalakshmi

DOI:

https://doi.org/10.53555/ejac.v20i1.1158

Keywords:

Artificial intelligence, Microbiology, Pathogen Detection, Microbiome, Medicine, Metagenomic

Abstract

Artificial intelligence (AI) is making substantial advances in a wide range of scientific areas, with microbiology being one of the most heavily influenced. AI's capacity to scan massive information, identify complicated patterns, and automate procedures is revolutionizing microbial research, diagnostics, drug discovery, and illness prediction. This paper investigates the existing applications of AI in microbiology, highlighting major breakthroughs, addressing field problems, and discussing future perspectives for incorporating AI technologies into microbial studies. With continuing study and innovation, AI has the potential to transform how we understand, diagnose, and treat microbial infections.

Author Biographies

  • J. Suriakumar

    Associate Professor, Department of Microbiology, Government Medical College, Dindigul, Tamil Nadu, India.

  • T. Murugalakshmi

    Assistant Professor, Department of Pharmacology, Government Medical College, Dindigul, Tamil Nadu, India.

References

Maraz KM, Khan RA. An overview on impact and application of microorganisms on human health, medicine and environment. GSC Biol Pharm Sci. 2021;16:89-104.

Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. European Journal of Microbiology and Immunology. 2024 May 14;14(2):97-115.

Bianconi I, Aschbacher R, Pagani E. Current uses and future perspectives of genomic technologies in clinical microbiology. Antibiotics. 2023 Oct 30;12(11):1580.

Tiseo G, Arena F, Borrè S, Campanile F, Falcone M, Mussini C, Pea F, Sganga G, Stefani S, Venditti M. Diagnostic stewardship based on patient profiles: differential approaches in acute versus chronic infectious syndromes. Expert Review of Anti-infective Therapy. 2021 Nov 2;19(11):1373-83.

Hossainpour H, Mahmoudi H. Revolutionizing Microbial Infection Diagnosis: The Role of Artificial Intelligence. Iranian Journal of Medical Microbiology. 2024 Apr 10;18(2):66-79.

Alsulimani A, Akhter N, Jameela F, Ashgar RI, Jawed A, Hassani MA, Dar SA. The impact of artificial intelligence on microbial diagnosis. Microorganisms. 2024 May 23;12(6):1051.

Rahmani AM, Azhir E, Ali S, Mohammadi M, Ahmed OH, Ghafour MY, Ahmed SH, Hosseinzadeh M. Artificial intelligence approaches and mechanisms for big data analytics: a systematic study. PeerJ Computer Science. 2021 Apr 14;7:e488.

Gurajala S. Artificial intelligence (AI) and medical microbiology: A narrative review. Indian Journal of Microbiology Research. 2024;11(3):156-62.

Tsitou VM, Rallis D, Tsekova M, Yanev N. Microbiology in the era of artificial intelligence: transforming medical and pharmaceutical microbiology. Biotechnology & Biotechnological Equipment. 2024 Dec 31;38(1):2349587.

Volf M, Vučemilović A, Dobrović Ž. Enhancing Environmental and Human Health Management Through the Integration of Advanced Revitalization Technologies Utilizing Artificial Intelligence. Toxics. 2024 Nov 25;12(12):847.

Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Medical Oncology. 2022 Jun 15;39(8):120.

Painuli D, Bhardwaj S. Recent advancement in cancer diagnosis using machine learning and deep learning techniques: A comprehensive review. Computers in Biology and Medicine. 2022 Jul 1;146:105580.

Mohseni P, Ghorbani A. Exploring the synergy of artificial intelligence in microbiology: Advancements, challenges, and future prospects. Computational and Structural Biotechnology Reports. 2024 Jun 1:100005.

Korteling JH, van de Boer-Visschedijk GC, Blankendaal RA, Boonekamp RC, Eikelboom AR. Human-versus artificial intelligence. Frontiers in artificial intelligence. 2021 Mar 25;4:622364.

Zhang J, Li C, Rahaman MM, Yao Y, Ma P, Zhang J, Zhao X, Jiang T, Grzegorzek M. A comprehensive review of image analysis methods for microorganism counting: from classical image processing to deep learning approaches. Artificial Intelligence Review. 2022 Apr 1:1-70.

Wu Y, Gadsden SA. Machine learning algorithms in microbial classification: a comparative analysis. Frontiers in Artificial Intelligence. 2023 Oct 19;6:1200994.

Wani AK, Roy P, Kumar V. Metagenomics and artificial intelligence in the context of human health. Infection, Genetics and Evolution. 2022 Jun 1;100:105267.

Wang XW, Wang T, Liu YY. Artificial Intelligence for Microbiology and Microbiome Research. arXiv preprint arXiv:2411.01098. 2024 Nov 2.

Danchin A. Artificial intelligence‐based prediction of pathogen emergence and evolution in the world of synthetic biology. Microbial Biotechnology. 2024 Oct;17(10):e70014.

Gupta S, Kashyap S, Kumar D. AI-driven Analysis of Environmental Metagenomic Data. InGenomic Intelligence (pp. 188-206). CRC Press.

Marcos-Zambrano LJ, Karaduzovic-Hadziabdic K, Loncar Turukalo T, Przymus P, Trajkovik V, Aasmets O, Berland M, Gruca A, Hasic J, Hron K, Klammsteiner T. Applications of machine learning in human microbiome studies: a review on feature selection, biomarker identification, disease prediction and treatment. Frontiers in microbiology. 2021 Feb 19;12:634511.

Brezočnik L, Žlender T, Rupnik M, Podgorelec V. Using Machine Learning and Natural Language Processing for Unveiling Similarities between Microbial Data. Mathematics. 2024 Aug 30;12(17):2717.

Mishra P, Maurya R, Avashthi H, Mittal S, Chandra M, Ramteke PW. Genome assembly and annotation. InBioinformatics 2022 Jan 1 (pp. 49-66). Academic Press.

Chandrashekar K, Niranjan V, Vishal A, Setlur AS. Integration of artificial intelligence, machine learning and deep learning techniques in genomics: review on computational perspectives for NGS analysis of DNA and RNA seq data. Current Bioinformatics. 2024 Nov 1;19(9):825-44.

Gong X, Zhang J, Gan Q, Teng Y, Hou J, Lyu Y, Liu Z, Wu Z, Dai R, Zou Y, Wang X. Advancing microbial production through artificial intelligence-aided biology. Biotechnology Advances. 2024 Jun 24:108399.

Branda F, Scarpa F. Implications of artificial intelligence in addressing antimicrobial resistance: Innovations, global challenges, and healthcare’s future. Antibiotics. 2024 May 29;13(6):502.

Desai SA, Patel VP, Bhosle K, Nagare S, Thombare K, Hashem A, Abd-Allah EF, Parray JA. Microbiome and Ecosystem Approaches. InProgress in Soil Microbiome Research 2024 Nov 22 (pp. 37-52). Cham: Springer Nature Switzerland.

Naveed M, Memon ZN, Abdullah M, Makhdoom SI, Azeem A, Mehmood S, Salahuddin M, Rajpoot Z, Majeed M. Use Cases and Future Aspects of Intelligent Techniques in Microbial Data Analysis. InMicrobial Data Intelligence and Computational Techniques for Sustainable Computing 2024 Mar 1 (pp. 259-280). Singapore: Springer Nature Singapore.

Imchen M, Anju VT, Busi S, Mohan MS, Subhaswaraj P, Dyavaiah M, Kumavath R. Metagenomic insights into taxonomic, functional diversity and inhibitors of microbial biofilms. Microbiological Research. 2022 Dec 1;265:127207.

Abdelwahab SI, Taha MM, Jerah AA, Farasani A, Abdullah SM, Aljahdali IA, Ibrahim R, Oraibi O, Oraibi B, Alfaifi HA, Alzahrani AH. Artificial intelligence and microbiome research: Evolution of hotspots, research trends, and thematic-based narrative review. Cellular and Molecular Biology. 2024 Nov 24;70(10):182-92.

Wasim A. AI-Guided Gut Microbiome Profiling for the Diagnostics of Neurological Disorders (Doctoral dissertation, (School of Interdisciplinary Engineering and Sciences (SINES)).

Huo D, Wang X. A new era in healthcare: The integration of artificial intelligence and microbial. Medicine in Novel Technology and Devices. 2024 Jul 2:100319.

Liu Y, Xu P. Quantitative and analytical tools to analyze the spatiotemporal population dynamics of microbial consortia. Current Opinion in Biotechnology. 2022 Aug 1;76:102754.

Ahmed SK, Hussein S, Qurbani K, Ibrahim RH, Fareeq A, Mahmood KA, Mohamed MG. Antimicrobial resistance: Impacts, challenges, and future prospects. Journal of Medicine, Surgery, and Public Health. 2024 Apr 1;2:100081.

Liu GY, Yu D, Fan MM, Zhang X, Jin ZY, Tang C, Liu XF. Antimicrobial resistance crisis: could artificial intelligence be the solution?. Military Medical Research. 2024 Jan 23;11(1):7.

Bhatt P, Singh S, Kumar V, Nagarajan K, Mishra SK, Dixit PK, Kumar V, Kumar S. Artificial intelligence in pharmaceutical industry: Revolutionizing drug development and delivery. Current Artificial Intelligence. 2024 Jan;2(1):E051223224198.

Talat A, Khan AU. Artificial intelligence as a smart approach to develop antimicrobial drug molecules: A paradigm to combat drug-resistant infections. Drug discovery today. 2023 Apr 1;28(4):103491.

Bagdad Y, Miteva MA. Recent applications of artificial intelligence in discovery of new antibacterial agents. Advances and Applications in Bioinformatics and Chemistry. 2024 Dec 31:139-57.

Gupta R, Srivastava D, Sahu M, Tiwari S, Ambasta RK, Kumar P. Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular diversity. 2021 Aug;25:1315-60.

Gupta YD, Bhandary S. Artificial intelligence for understanding mechanisms of antimicrobial resistance and antimicrobial discovery: a new age model for translational research. Artificial Intelligence and Machine Learning in Drug Design and Development. 2024 Jul 12:117-56.

Banik BK, Das A. Artificial Intelligence on Beta-Lactam Research. Chemistry and Biology of Beta-Lactams. 2024 Nov 7:363.

Masud RI, Fahim NA, Rana ML, Islam MS, Tanvir M. Artificial intelligence, a powerful tool to combat antimicrobial resistance: an update. J Adv Biotechnol Exp Ther. 2023;6(3):711.

Kulkarni VS, Alagarsamy V, Solomon VR, Jose PA, Murugesan S. Drug repurposing: an effective tool in modern drug discovery. Russian journal of bioorganic chemistry. 2023 Apr;49(2):157-66.

Parvatikar PP, Patil S, Khaparkhuntikar K, Patil S, Singh PK, Sahana R, Kulkarni RV, Raghu AV. Artificial intelligence: Machine learning approach for screening large database and drug discovery. Antiviral Research. 2023 Dec 1;220:105740.

Ali H. AI for pandemic preparedness and infectious disease surveillance: predicting outbreaks, modeling transmission, and optimizing public health interventions. Int J Res Publ Rev. 2024 Aug;5(8):4605-19.

Zeng D, Cao Z, Neill DB. Artificial intelligence–enabled public health surveillance—from local detection to global epidemic monitoring and control. InArtificial intelligence in medicine 2021 Jan 1 (pp. 437-453). Academic Press.

Ali F, Rehman A, Hameed A, Sarfraz S, Rajput NA, Atiq M. Climate change impact on plant pathogen emergence: artificial intelligence (AI) approach. InPlant quarantine challenges under climate change anxiety 2024 May 16 (pp. 281-303). Cham: Springer Nature Switzerland.

Kaur I, Kumar Y, Sandhu AK, Ijaz MF. Predictive modeling of epidemic diseases based on vector-borne diseases using artificial intelligence techniques. InComputational intelligence in medical decision making and diagnosis 2023 Mar 31 (pp. 81-100). CRC Press.

Zhao AP, Li S, Cao Z, Hu PJ, Wang J, Xiang Y, Xie D, Lu X. AI for science: predicting infectious diseases. Journal of safety science and resilience. 2024 Mar 15.

Malik YS, Sircar S, Bhat S, Ansari MI, Pande T, Kumar P, Mathapati B, Balasubramanian G, Kaushik R, Natesan S, Ezzikouri S. How artificial intelligence may help the Covid‐19 pandemic: Pitfalls and lessons for the future. Reviews in medical virology. 2021 Sep;31(5):1-1.

Bailey K. The Imperative of Emergency Management in Healthcare. Emergency Management for Healthcare Leaders: Navigating Crisis from Chaos to Control. 2025 Mar 26.

Alshamrani M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. Journal of King Saud University-Computer and Information Sciences. 2022 Sep 1;34(8):4687-701.

Salam UA. Real-Time Disease Surveillance: AI in Tracking and Controlling Outbreaks. Emerging Trends in Medicine. 2024 Jun 30;1(1):9-13.

Steffi PF, Thirumalaiyammal B, Anburaj R, Mishel PF. Artificial intelligence in bioremediation modelling and clean-up of contaminated sites: recent advances, challenges and opportunities. Omics Insights in Environmental Bioremediation. 2022 Sep 27:683-702.

Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M. Recent strategies for bioremediation of emerging pollutants: a review for a green and sustainable environment. Toxics. 2022 Aug 19;10(8):484.

Fouad FA, Youssef DG, Shahat FM, Abd El-Ghany MN. Role of microorganisms in biodegradation of pollutants. InHandbook of biodegradable materials 2022 Oct 26 (pp. 1-40). Cham: Springer International Publishing.

Wijaya J, Byeon H, Jung W, Park J, Oh S. Machine learning modeling using microbiome data reveal microbial indicator for oil-contaminated groundwater. Journal of Water Process Engineering. 2023 Jul 1;53:103610.

Gautam K, Sharma P, Dwivedi S, Singh A, Gaur VK, Varjani S, Srivastava JK, Pandey A, Chang JS, Ngo HH. A review on control and abatement of soil pollution by heavy metals: Emphasis on artificial intelligence in recovery of contaminated soil. Environmental Research. 2023 May 15;225:115592.

Sands M, Chaudhary T, Irudayaraj J, Shah MM. Advanced sensor platforms and machine learning tools for real-time contaminant monitoring. Machine Learning and Artificial Intelligence in Chemical and Biological Sensing. 2024 Jan 1:293-320.

Kaur G, Tiwana PS, Kommula AV. Advancements in water quality monitoring: leveraging machine learning and artificial intelligence for environmental management. InComputational Automation for Water Security 2025 Jan 1 (pp. 11-26). Elsevier.

Sundui B, Ramirez Calderon OA, Abdeldayem OM, Lázaro-Gil J, Rene ER, Sambuu U. Applications of machine learning algorithms for biological wastewater treatment: updates and perspectives. Clean Technologies and Environmental Policy. 2021 Jan;23:127-43.

Onwudiegwu CA, Sylva L, Aigberua AO, Hait M. Biological Monitoring of Air Pollutants. InAir Pollutants in the Context of One Health: Fundamentals, Sources, and Impacts 2024 Sep 10 (pp. 457-484). Cham: Springer Nature Switzerland.

Wen G, Cao Y, Wei X. The data-driven analysis of soil health and crop adaptability: Technologies, impacts, and optimization strategies. Advances in Resources Research. 2025 Jan 18;5(1):350-68.

Wu Y, Gadsden SA. Machine learning algorithms in microbial classification: a comparative analysis. Frontiers in Artificial Intelligence. 2023 Oct 19;6:1200994.

Goodswen SJ, Barratt JL, Kennedy PJ, Kaufer A, Calarco L, Ellis JT. Machine learning and applications in microbiology. FEMS microbiology reviews. 2021 Sep;45(5):fuab015.

Maiti S, Kannan D, Rao TV. Artificial intelligence in controlling antimicrobial resistance. GLOBAL INFECTION PREVENTION AND MANAGEMENT IN HEALTHCARE.:280.

Nwankwo EI, Emeihe EV, Ajegbile MD, Olaboye JA, Maha CC. Artificial Intelligence in predictive analytics for epidemic outbreaks in rural populations. International Journal of Life Science Research Archive. 2024 Aug;7(1):078-94.

Sanjeevi R, Sathvara PB, Tripathi S, Anuradha J. The ai cleanse: Revolutionizing the future of wastewater treatment with ai and machine learning. InThe AI Cleanse: Transforming Wastewater Treatment Through Artificial Intelligence: Harnessing Data-Driven Solutions 2024 Aug 21 (pp. 245-263). Cham: Springer Nature Switzerland.

Ma S, Ren B, Mallick H, Moon YS, Schwager E, Maharjan S, Tickle TL, Lu Y, Carmody RN, Franzosa EA, Janson L. A statistical model for describing and simulating microbial community profiles. PLoS computational biology. 2021 Sep 13;17(9):e1008913.

Bai L, You Q, Zhang C, Sun J, Liu L, Lu H, Chen Q. Advances and applications of machine learning and intelligent optimization algorithms in genome-scale metabolic network models. Systems Microbiology and Biomanufacturing. 2023 Apr;3(2):193-206.

Carini C, Seyhan AA. Tribulations and future opportunities for artificial intelligence in precision medicine. Journal of Translational Medicine. 2024 Apr 30;22(1):411.

Kan CM, Tsang HF, Pei XM, Ng SS, Yim AK, Yu AC, Wong SC. Enhancing clinical utility: utilization of international standards and guidelines for metagenomic sequencing in infectious disease diagnosis. International journal of molecular sciences. 2024 Mar 15;25(6):3333.

Huttenhower C, Finn RD, McHardy AC. Challenges and opportunities in sharing microbiome data and analyses. Nature Microbiology. 2023 Nov;8(11):1960-70.

Gangwal A, Ansari A, Ahmad I, Azad AK, Sulaiman WM. Current strategies to address data scarcity in artificial intelligence-based drug discovery: A comprehensive review. Computers in Biology and Medicine. 2024 Sep 1;179:108734.

Rehan H. AI-Powered Genomic Analysis in the Cloud: Enhancing Precision Medicine and Ensuring Data Security in Biomedical Research. Journal of Deep Learning in Genomic Data Analysis. 2023 Feb;3(1):37-71.

Ijaiya H, Odumuwagun OO. Advancing Artificial Intelligence and Safeguarding Data Privacy: A Comparative Study of EU and US Regulatory Frameworks Amid Emerging Cyber Threats.

Utomi E, Osifowokan AS, Donkor AA, Yowetu IA. Evaluating the Impact of Data Protection Compliance on AI Development and Deployment in the US Health sector.

Alsulimani A, Akhter N, Jameela F, Ashgar RI, Jawed A, Hassani MA, Dar SA. The impact of artificial intelligence on microbial diagnosis. Microorganisms. 2024 May 23;12(6):1051.

Ortmann J. Of opaque oracles: epistemic dependence on AI in science poses no novel problems for social epistemology. Synthese. 2025 Feb;205(2):1-22.

Kalasampath K, Spoorthi KN, Sajeev S, Kuppa SS, Ajay K, Angulakshmi M. A Literature Review on Applications of Explainable Artificial Intelligence (XAI). IEEE Access. 2025 Feb 28.

Li X, Xiong H, Li X, Wu X, Zhang X, Liu J, Bian J, Dou D. Interpretable deep learning: Interpretation, interpretability, trustworthiness, and beyond. Knowledge and Information Systems. 2022 Dec;64(12):3197-234.

Norori N, Hu Q, Aellen FM, Faraci FD, Tzovara A. Addressing bias in big data and AI for health care: A call for open science. Patterns. 2021 Oct 8;2(10).

Budach L, Feuerpfeil M, Ihde N, Nathansen A, Noack N, Patzlaff H, Naumann F, Harmouch H. The effects of data quality on machine learning performance. arXiv preprint arXiv:2207.14529. 2022 Jul 29.

Ali A. Ethical Implications of Artificial Intelligence: Ensuring Patient Data Security. InTransforming Healthcare Sector Through Artificial Intelligence and Environmental Sustainability 2025 Jan 23 (pp. 149-164). Singapore: Springer Nature Singapore.

Giuste F, Shi W, Zhu Y, Naren T, Isgut M, Sha Y, Tong L, Gupte M, Wang MD. Explainable artificial intelligence methods in combating pandemics: A systematic review. IEEE Reviews in Biomedical Engineering. 2022 Jun 23;16:5-21.

El-Sayed A, Aleya L, Kamel M. Microbiota’s role in health and diseases. Environmental Science and Pollution Research. 2021 Jul;28(28):36967-83.

Ogunjobi TT, Okafor AM, Ohuonu NI, Nebolisa NM, Abimbolu AK, Ajayi RO, Afuape AR, Ojajuni MG, Ogunbor OO, Elijah EU, Akinwande KG. Navigating the Complexity of the Human Microbiome: Implications for Biomedical Science and Disease Treatment. Medinformatics. 2024 Sep 13.

Patil A, Singh N, Patwekar M, Patwekar F, Patil A, Gupta JK, Elumalai S, Priya NS. AI-driven insights into the microbiota: figuring out the mysterious world of the gut. Intelligent Pharmacy. 2024 Aug 19.

Allam H. Prescribing the Future: The Role of Artificial Intelligence in Pharmacy. Information. 2025 Feb 11;16(2):131.

Harini M. Telemedicine and health care accessibility: AI-powered remote Diagnostics. Bulletin of Nexus: Journal of Multidisciplinary International Research Studies. 2024 Oct;1(1):1-5.

Umar Ibrahim A, Pwavodi PC, Ozsoz M, Al-Turjman F, Galaya T, Agbo JJ. Crispr biosensing and Ai driven tools for detection and prediction of Covid-19. Journal of Experimental & Theoretical Artificial Intelligence. 2023 May 19;35(4):489-505.

Taniguchi M, Minami S, Ono C, Hamajima R, Morimura A, Hamaguchi S, Akeda Y, Kanai Y, Kobayashi T, Kamitani W, Terada Y. Combining machine learning and nanopore construction creates an artificial intelligence nanopore for coronavirus detection. Nature communications. 2021 Jun 17;12(1):3726.

Madupati B. Leveraging AI for Rural Development. Available at SSRN 5135045. 2024 Feb 21.

Vashishth TK, Sharma V, Sharma KK, Vidyant S, Bhardwaj A. Future Trends and Challenges in Pharmaceutical Microbiology with the Integration of Artificial Intelligence. AI-Powered Advances in Pharmacology. 2025:315-44.

Wysocki O, Davies JK, Vigo M, Armstrong AC, Landers D, Lee R, Freitas A. Assessing the communication gap between AI models and healthcare professionals: Explainability, utility and trust in AI-driven clinical decision-making. Artificial Intelligence. 2023 Mar 1;316:103839.

Pyzer-Knapp EO, Pitera JW, Staar PW, Takeda S, Laino T, Sanders DP, Sexton J, Smith JR, Curioni A. Accelerating materials discovery using artificial intelligence, high performance computing and robotics. npj Computational Materials. 2022 Apr 26;8(1):84.

Wasilewski T, Kamysz W, Gębicki J. AI-assisted detection of biomarkers by sensors and biosensors for early diagnosis and monitoring. Biosensors. 2024 Jul 22;14(7):356.

Mohammed NS. Advancements in Diagnostic Technology: The Role of Automation in Modern Medical Laboratories. African Journal of Advanced Pure and Applied Sciences (AJAPAS). 2024 Oct 30:245-55.

Downloads

Published

10-03-2025

Issue

Section

Articles