“Synthesis, Characterization And Biological Activities Of Some Newly Synthesized Macrocyclic Complexes Of Fe(Ii) Metal Ions”

Authors

  • Dr. Sangeeta Gautam
  • Om Prakash Gurjar

DOI:

https://doi.org/10.53555/ejac.v20i1.1179

Keywords:

Macrocyclic complexes, iron(II), antibacterial, antifungal, antioxidant

Abstract

New series of macrocyclic iron complexes, Fe(C30H20N8O2) and Fe(C30H18Cl2N8O2), were successfully prepared using a template synthesis method in a methanolic solution. The synthesis of these complexes involved a [2+2] cyclocondensation reaction, where diamines, specifically 4-aminobenzoic hydrazide and 2-aminobenzhydrazide, were reacted with α-diketones, namely isatin and 5-chloroisatin, in the presence of iron sulphate as a template ion. The physicochemical properties of these complexes were investigated through various methods, including determining their decomposition temperature, conducting conductivity measurements, conducting elemental analyses, and measuring their magnetic moments. It was observed that these complexes exhibited solubility in dimethyl sulphoxide (DMSO). A variety of techniques were employed to analyze the spectra of the synthesized complexes, including scanning electron microscopy (SEM), infrared spectroscopy (IR), nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and UV/Visible (UV/Vis) spectroscopy. The antibacterial and antifungal efficacy of all the synthesized complexes was evaluated against bacterial strains such as E. coli and S. aureus, as well as fungal strains like Alternaria alternata and Fusarium solani. This assessment was conducted using the Agar well diffusion method. The antioxidant properties of these complexes were assessed using the DPPH (2,2-diphenyl-1-picrylhydrazyl) method. The results were compared with the standard antioxidant, ascorbic acid, and demonstrated satisfactory antioxidant activity.

Author Biographies

  • Dr. Sangeeta Gautam

    Department of Science and Technology, Jayoti Vidyapeeth Women‘s University Jaipur, 303122, Rajasthan, India

  • Om Prakash Gurjar

    Department of Science and Technology, Jayoti Vidyapeeth Women‘s University Jaipur, 303122, Rajasthan, India,

References

Chandra S, Tyagi M, Agarwal S. Synthesis and characterization of a tetraaza macrocyclic ligand and its cobalt (II), nickel (II) and copper (II) complexes. J. Serbian Chem. Soc. 2010;75(7):935-941. http://dx.doi.org/10.2298/JSC090804069C

Tyagi M, Chandra S, Choudhary SK. Tetraaza macrocyclic complexes: Synthesis, spectral and antifungal studies. J. Chem. Pharm. Res. 2011;3(1):56-63.

Khatun M, Ghorai P, Mandal J, Chowdhury SG, Karmakar P, Blasco S, Espana EG, Amrita Saha. ACS Omega. 2023;8(8):7479-7491 DOI: 10.1021/acsomega.2c06549

Chandra S, Qanungo K, Sharma SK. New hexadentate macrocyclic ligand and their copper (II) and nickel (II) complexes: spectral, magnetic, electrochemical, thermal, molecular modeling and antimicrobial studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;94:312-317. https://doi.org/10.1016/j.saa.2011.12.028

Nirmala G, Rahiman AK, Sreedaran S, Jegadeesh R, Raaman N, Narayanan V. New 14-membered transdi-substituted ‗tet-a‘macrocycles and their copper (II) and nickel (II) complexes: Spectral, magnetic, electrochemical, crystal structure, catalytic and antimicrobial studies. J. Mol. Struct. 2011;989(1-3):91100. Doi:10.1016/j.molstruc.2011.01.010

Kanaoujiya R, Singh D, Minocha T, Yadav SK, Srivastava S. Synthesis, characterization of ruthenium (III) macrocyclic complexes of 1, 4, 8, 11-tetraazacyclotetradecane (cyclam) and in vitro assessment of anti-cancer activity. Materials Today: Proceedings. 2022; 65:3143-3149.DOI:10.1016/j.matpr.2022.05.354

Ilhan S, Temel H. Synthesis and characterization of a new macrocyclic Schiff base derived from 2, 6diaminopyridine and 1, 10-bis (2-formylphenyl)-1, 4, 7, 10-tetraoxadecane and its Cu (II), Ni (II), Pb (II), Co (III) and La (III) complexes. Transit. Met. Chem. 2007;32:1039-1046. https://doi.org/10.1007/s11243007-0276-5

Aly AA, Abdallah EM, Ahmed SA, Rabee MM, Brase S. Transition Metal Complexes of Thiosemicarbazides, Thiocarbohydrazides, and Their corresponding Carbazones with Cu(I), Cu(II), Co(II), Ni(II), Pd(II), and Ag(I)—A Review. Molecules. 2023;28:1808. https://doi.org/ 10.3390/molecules28041808 S

Ali V, Singh P, Jain V, Tripathi J. Saudi Chem. Soc. 2019;23:52–60 https://doi.org/10.1016/j.jscs.2018.04.005 & Singh P, Tripathi V. IJC-A. . 2020;59A(06):752-759.

Khalid S, Sumrra SH, Chohan ZH. Sains Malaysiana. 2020;49(8):1891-1904. http://dx.doi.org/10.17576/jsm-2020-4908-11

Li J, Guo L, Huo H. Preparation of nickel catalysts bearing Schiff base macrocycles and their performance in ethylene oligomerization. Transit Met Chem. 2023. https://doi.org/10.1007/s11243-02300527-w

Fierro CM, Smith PD, Light ME. Polyhedron. 2023; 230. https://doi.org/10.1016/j.poly.2022.116222

Schuman A.J, Raghavan A, Banziger SD, Song Y, Hu ZB, Mash BL, Williams AL, Ren T. Macrocyclic Chromium (III) Catecholate Complexes. Inorg. Chem. 2021;60(7):4447-4455.

Kostova I. Inorganics. 2023;11(2):56. https://doi.org/10.3390/inorganics11020056

Chandra S, Gupta LK, Agrawal S. Modern spectroscopic and biological approach in the characterization of a novel 14-membered [N 4] macrocyclic ligand and its transition metal complexes. Transit. Met. Chem. 2007;32:240-245. https://doi.org/10.1007/s11243-006-0155-5

Singh DP, Kumar K, Dhiman SS, Sharma J. Antibacterial and antifungal studies of macrocyclic complexes of trivalent transition metal ions with their spectroscopic approach. J. Enzyme Inhib. Med. Chem. 2010;25(1):21-28. https://doi.org/10.3109/14756360902932750

Rathi P, Singh DP, Surain P. Synthesis, characterization, powder XRD and antimicrobial-antioxidant activity evaluation of trivalent transition metal macrocyclic complexes. C R Chim. 2015;18(4):430-437. https://doi.org/10.1016/j.crci.2014.08.002

Lash TD. Molecules. 2023;28(3):1496. https://doi.org/10.3390/molecules28031496

Cabbiness DK, Margerum DW. Macrocyclic effect on the stability of copper (II) tetramine complexes. J. Am. Chem. Soc. 1969;91(23):6540-6541. DOI: 10.1021/Ja01051A091

Fabbrizzi L, Paoletti P, Clay RM. Microcalorimetric determination of the enthalpy of a slow reaction: destruction with cyanide of the macrocyclic (1, 4, 8, 11-tetraazacyclotetradecane) nickel (II) ion. Inorg. Chem. 1978;17(4):1042-1046. https://doi.org/10.1021/ic50182a048

Lindoy LF. Heavy Metal Chemistry of Mixed Donor Macrocyclic Ligands: Strategies for Obtaining Metal Ion Recognition. J Incl Phenom Macrocycl Chem. 1990;171-183.

Chandra S, Qanungo K, Sharma SK. New hexadentate macrocyclic ligand and their copper (II) and nickel (II) complexes: spectral, magnetic, electrochemical, thermal, molecular modeling and antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;94:312-317. Doi: 10.1016/j.saa.2011.12.028

Nath R, Pathania S, Grover G, Akhtar MJ. J. Mol. Struct. 2020. https://doi.org/10.1016/j.molstruc.2020.128900

Mishra P, Sethi P, Kumari A. Emerging applications and host- guest chemistry of synthetic macrocycles, Res. J. Chem. Environ. 2022;26(7):153-157. DOI:10.25303/2607rjce153167

Lahari K, Sundararajan R. J. Chem. Sci. 2020;132:94. https://doi.org/10.1007/s12039-017-1398-8

Yang J, Dai D, Cai Z, Liu YQ, Qin JC, Wang Y, Yang YW. Acta Biomater. 2021;134:664–73. https://doi.org/10.1016/j.actbio.2021.07.050.

Liu H, Yang J, Yan X, Li C, Elsabahy M, Yang YW, Gao HA. J. Mater. Chem. B. 2021;9:9594–9605. DOI: 10.1039/d1tb02134f

Dai D, Yang J, Yang YW. Chem. Eur. J. 2022. DOI: 10.1002/chem.202103185 (Invited Contribution).

Dileepan AGB, Prakash TD, Kumar AG, Rajam PS, Dhayabaran VV, Rajaram RJ. Photochem. Photobiol. BBiol. 2018. Doi:10.1016/j.jphotobiol.2018.04.029

Bugalia S, Dhayal Y, Sachdeva H, Kumari S, Atal K, Phageria U, Saini P, Gurjar OP. Review on Isatin‑ A Remarkable Scaffold for Designing Potential Therapeutic Complexes and Its Macrocyclic Complexes with Transition Metals. JIOPM. 2023. https://doi.org/10.1007/s10904-023-02666-0

Curtis NF. Macrocyclic coordination compounds formed by condensation of metal-amine complexes with aliphatic carbonyl compounds. Coord. Chem. Rev. 1968;3(1):3-47. https://doi.org/10.1016/S00108545(00)80104-6

Shakir M, Bano N, Rauf MA, Owais M. J. Chem. Sci. 2017;129(12):1905–1920. https://doi.org/10.1007/s12039-017-1398-8

Niasari MS, Davar F. In situ one-pot template synthesis (IOPTS) and characterization of copper (II) complexes of 14-membered hexaaza macrocyclic ligand ―3, 10-dialkyl-dibenzo-1, 3, 5, 8, 10, 12hexaazacyclotetradecane‖. Inorg. Chem. Commun. 2006; 9(2):175-179. DOI:10.1016/j.inoche.2005.10.028

Prasad RN, Mathur M, Upadhyay A. Synthesis and spectroscopic studies of Cr (III), Fe (III) and Co (II) complexes of hexaazamacrocycles. J. Indian Chem. Soc. 2007;84(12):1202-1204.

Kamboj M, Singh DP, Singh AK, Chaturvedi D. Molecular modeling, in-silico docking and antibacterial studies of novel template wangled macrocyclic complexes involving isatin moiety. J. Mol. Struct. 2020;1207:127602. DOI:10.1016/j.molstruc.2019.127602

Chandra S, Qanungo K, Sharma SK. New hexadentate macrocyclic ligand and their copper (II) and nickel (II) complexes: spectral, magnetic, electrochemical, thermal, molecular modeling and antimicrobial studies. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012;94:312-317. Doi: 10.1016/j.saa.2011.12.028

Martin JG, Wei RM, Cummings SC. Copper (II) complexes with 13-membered macrocyclic ligands derived from triethylenetetramine and acetylacetone. Inorg. Chem. 1972;11(3):475-479.

Holtman MS, Cummings SC. Macrocyclic nickel (II) complexes with new, dimethyl-substituted 13-and 14-membered tetraaza ligands. Inorg. Chem. 1976;15(3):660-665.

Roberts GW, Cummings SC, Cunningham JA. Synthesis and characterization of low-spin cobalt (II) complexes with macrocyclic tetraaza ligands. The crystal structure of [Co ([14] dieneN4). cntdot. H2O (PF6) 2. Inorg. Chem. 1976;15(10):2503-2510.

Coltrain BK, Jackels SC. Coordination chemistry of a copper (II) tetraimine macrocycle: four-, five-, and six-coordinate derivatives and reduction transmetalation to the zinc (II) complex. Inorg. Chem. 1981;20(7):2032-2039. https://doi.org/10.1021/ic50221a021

Chandra S, Pundir M. Spectroscopic characterization of chromium (III), manganese (II) and nickel (II) complexes with a nitrogen donor tetradentate, 12-membered azamacrocyclic ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008;69(1):1-7.

Prasad RN, Upadhyay A. Chromium (III), iron (III) and cobalt (II) complexes of 14-and 16-membered tetraazamacrocycles. J. Indian Chem. Soc. 2006;83(9):857-860.

Chandra S, Gupta R, Gupta N, Bawa SS. Biologically relevant macrocyclic complexes of copper spectral, magnetic, thermal and antibacterial approach. Transit. Met. Chem. 2006;31(2):147-151.

Chandra S, Gupta LK, Agrawal S. Synthesis spectroscopic and biological approach in the characterization of novel [N 4] macrocyclic ligand and its transition metal complexes. Transit. Met. Chem. 2007;32:558563.

Gammal OAE, Brashy SAE, El‐Reash GMAE. Macrocyclic Cr3+, Mn2+ and Fe3+ complexes of a mimic SOD moiety: Design, structural aspects, DFT, XRD, optical properties and biological activity. Appl. Organomet. Chem. 2020;34(4):5456. DOI:10.1002/aoc.5456

Habtemariam AB, Sibhatu AK, Weldegebrieal GK, Zelekew OA, Tekletsadik BT. Lett. Appl. NanoBioScience, 9, 808(2020). https://doi.org/10.33263/LIANBS91.808813.

Subhanandaraj TT, Raghavan KT, Narayanan R. 9, 988(2020). https://doi.org/10.33263/LIANBS92.988994.

Hruska LW and Savinell R F. J. Electrochem. Soc. 128 18 (1981)

Richard M, Burger, American chemical society, chem. Rev., 98(3), 1153(1998). S0009-2665(96)00438-4 CCC.

Sidney M, Hecht. The chemistry of activated Bleomycin, American chemical society 19, 383(1986). 0001-4842/86/0119-0383.

Joanne S, Kozarich JW, Wei W and Dana E. Vanderwall, Bleomycins, Aerican chemical society, 29, 322(1996). S0001-4842(95)00133-6CCC.

Huang W, Jia J, Cummings J, Nelson M, Schneider G and Lindquist Y. Crystal structure of nitrile hydrate, 5(5), 661(1997). http://biomednet.com/elecref/0969212600500691.

Novel non-heme Iron center of nitrile hydratase with a claw setting of oxygen atoms, Nature structured biological, 5(5), 347(1998).

Collins TJ. J. Am. Chem. Soc., 27, 279(1994).

Nguyen C, Guajardo RJ and Mascharak PK. J. Am. Chem. Soc., 35, 6273(1996).

Brown SJ, Olmstead MM and Mascharak PK. J. Am. Chem. Soc., 29, 3229(1990).

Umezawa H, Takita T, Sugiura Y, Otsuko M, Kobayashi S and Ohno M. Tetrahedron, 40(3), 501(1984).

Zhu S, Brennessel WW, Harrison RG, Que LJ. Inorganic chim. Acta-337, 32(2002).

Marlin DS and Mascharak PK. RSC, 29, 69(2000).

Li T, Fang Q, Xi X, Chen Y and Liu F. J. Mater. Chem. C, 7, 586(2019). DOI: 10.1039/c8ta08829b.

Zhang H, Wu JR, Wang X, Li XS, Wu MX, Liang F and Yang YW. Dyes and Pigments 162, 512(2019). https://doi.org/10.1016 /j.dyepig.2018.10.061.

Zhou J, Chen M and Diao G. J. Am. Chem. l soc., XXXX, (XXX), XXX-XXX (2014). dx.doi.org/10.1021/am5057147.

Zhu H, Liu J, Shi B, Wang H, Mao Z, Shan T and Huang F. Mater. Chem. Front, 2, 1475(2018).

Thomas CR, Ferris DP, Lee JH, Choi E, Cho MH, Kim ES, Stoddart JF, Shin JS, Cheon J and Zink JI. J. Am. Chem. Soc., 132, 10623(2010).

Qiao H, Jia J, Shen H, Zhao S, Chen E, Chen W, Di B and Hu C. Enzyme Adv. Healthcare Mater, 1900174(1 of 10) (2019). DOI:10.1002/adhm.201900174

Zafar H, Kareem A, Sherwani A, Mohammad O, Khan TA. Synthesis, characterization and biological studies of homo and hetero-binuclear 13-membered pentaaza bis (macrocyclic) complexes. J. Mol. Struct. 2015;1079:337–346. http://dx.doi.org/10.1016/ j.molstruc.2014.08.036

Drahos B, Antal P, Salitros I, Herchel R. Magnetic properties of Fe(II) complexes of cyclam derivative with one p-aminobenzyl pendant arm. Metals 2020, 10, 366; https://doi.org/10.3390/met10030366

Zafar H, Kareem A, Sherwani A, Mohammad O, Khan TA. Synthesis, characterization and biological studies of homo and hetero-binuclear 13-membered pentaaza bis (macrocyclic) complexes. J. Mol. Struct. 2015;1079:337–346. http://dx.doi.org/10.1016/ j.molstruc.2014.08.036

Singh DP, Kumar R, Singh J. Antibacterial activity and spectral studies of trivalent chromium, manganese, iron macrocyclic complexes derived from oxalyldihydrazide and glyoxal. J Enzyme Inhib Med Chem. 2009;24(3):883-889.

Prasad RN, Mathur M, Upadhyay A. Synthesis and spectroscopic studies of Cr (III), Fe (III) and Co (II) complexes of hexaazamacrocycles. J. Indian Chem. Soc. 2007;84(12):1202-1204.

Costamagna J, Ferraudi G, Villagran M, Wolcan E. Ligand luminescence and photoinduced charge separation in bis (naphthalene) substituted fourteen-membered tetraazamacrocyclic complexes of Cu II and Ni II. J. Chem. Soc., Dalton Trans. 2000;(15):2631-2637. https://doi.org/10.1039/B002829K

Singh DP, Shishodia N, Yadav BP, Rana VB. Trivalent transition metal ion directed macrocycles. J. Indian Chem. Soc. 2004; 81(4):287-290.

Chandra S, Gupta LK. Electronic, EPR, magnetic and mass spectral studies of mono and homo-binuclear Co (II) and Cu (II) complexes with a novel macrocyclic ligand. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005;62(4-5):1102-1106. Doi: 10.1016/j.saa.2005.04.007

Nakamoto K. Infrared and Raman spectra of inorganic and coordination compounds, part B: applications in coordination, organometallic, and bioinorganic chemistry. John Wiley & Sons. 2009.

Singh DP, Kumar K, Dhiman SS, Sharma J. Biologically active macrocyclic complexes derived from diaminonaphthalene and glyoxal: Template synthesis and spectroscopic approach. J. Enzyme Inhib. Med. 2009;24(3):795–803. DOI: 10.1080/14756360802397179

Pérez C, Anesini C. Antibacterial activity of alimentary plants against Staphylococcus aureus growth. Am. J. Chinese Med. 1994; 22(02):169-174.

Alothman M, Bhat R, Karim AA. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009;115(3):785-788.

Downloads

Published

05-06-2025

Issue

Section

Articles