Electrochemical Synthesis of Coordination Compounds of Antimony(III) Thiolates
DOI:
https://doi.org/10.53555/k2bddx45Keywords:
Antimony, Thiols, Tetrabutylammonium chlorideAbstract
The antimony(III) thiolate, synthesized, have been refluxed with 1,10 - phenanthroline and 2,2’ - bipyridyl separately in various solvents like methanol, ethanol, benzene and acetonitrile for 48 hours in order to prepare their coordination compounds. Analytical data and infrared spectral data of the products so obtained show that the ligand molecules could not enter the coordination sphere of these antimony(III) thiolate. It is, therefore, considered worthwhile that the ligand may be added to these alkoxides before these form alkoxy bridges and get polymerized. Therefore, in addition to thiol and supporting electrolyte, 1.0 g of the ligand (1,10 - phenanthroline or 2,2’ - bipyridyl) was also added to these systems and the solution was electrolyzed at antimony anode and inert platinum cathode for ten hours. The products obtained are insoluble in commonly used organic solvents and do not melt upto 3000C. Elemental analysis and infrared data conform to general formula, Sb(SR)3.L.
References
1. Jay D. Wadhawan, Frank Marken, Richard G. Compton, Steve D. Bull and Stephen G. Devis, Chem. Commun., 87, 2001.
2. D. Degner, Top. Curr. Chem., 1, 14, 1998.
3. J. Utely, Chem. Soc. Rev., 157, 26, 1997.
4. Eberhard Steckhan, Angewandte Chemie International, 683, 25, 1986.
5. A. Jutand, kk Hii, M Thornton-Pert and J.M. brown, Organometallic, 18, 1999.
6. S. Olivero and E. Duanch, Eur. J. Org. Chem., 1885, 1999.
7. A Gennaro, A.A. Isse and F. Maran, J. Electroanal. Chem., 124, 507, 2001.
8. Tung Siu, Weizi and Andrei K. Yudin, J. Comb. Chem., 554, 3, 2001.
9. M. Faraday, Ann. Phys. (Leipzig), 438, 47, 1834.
10. Kolbe, J. Prakt. Chem., 138, 41, 1847.
11. A. Crum Brown and J. Walker, Liebigs Ann. Chem., 107, 261, 1891.
12. A. Crum Brown and J. Walker, Liebigs Ann. Chem., 41, 274, 1873.
13. C. K. Maan and K.K. Bains, “Electrochemical reactions in non-aqueous system,” Marcel-Dekker Inc., N.Y. 1970.
14. H. Lund, K. Dassbjerg, D. Occhialini and S.U. Pedersen, Elektrokhimiya, 939, 31, 1995.
15. A. Jutand, S. Negri, Eur. J. Org. Chem., 1811, 1996.
16. H. Lund, Acta Chem. Scand., 491. 1329. 11. 1957.
17. N. Clauson-Kaas, F. Limborg and K. Glens, Acta Chem. Scand., 531, 6, 1952.
18. L. Eberson and H. Schaffer, “Topic in current chemistry,” No. 21, Springer-Verlang Marlin Heidelberg, N.Y. pp. (a) 144-154 (b) 49-58.
19. Tae-Hun Kim and Su Moon Park, Electrochemica Acta, 1461, 50, 2005.
20. Aleksanda Buzarovska, Irena arsovaand Ljubomir Arsov, J. Serb.Chem. Soc., 27-37, 66, 2001.
21. T. Komoti and T. Nonaka, J. Am. Chem. Soc., 2656, 106, 1984.
22. T. Osa, Y. Kashiwangi, Y. Yanagisawa and J.M. Bobbit, J. Chem. Soc. Chem. Commun., 2535, 1994.
23. B.L. Funt and K.C. Yu, J. Polym. Sci., 359, 69, 1962.
24. C. Simionescu and M. Grovu, Angew. Markromol. Chem., 149, 111, 1983.
25. G.S. Shapoval, J. Macromol. Sci. chem., 453, A 17, 1982.
26. J.H. Simons, J. Electrochem. Soc., 47. 95, 1949.
27. H.A. Rehan, Polymer International, 218-224, 52, 2003.
28. Youichi Tsuchiya and Hisashi Fujihara, Electrochemistry, 584, 70, 2002.
29. Prem Raj, Santosh Agnihotri, and Kiran Singhal, Synth. React. Inorg. Met-Org., Chem., 569–581, 32(3), 2002.
30. Taimur A. Shaikh, Sean Parkin, David A. Atwood, Journal of Organometallic Chemistry 4167–4171, 691, 2006.
31. Rakesh Bohra, Anita Dhammani, Rajnish K. Sharma and Ram C. Mehrotra, Synth. React. Inorg. Met.-Org. Chem., 681– 693, 31(4), 2001.