Vehicle Theft Detection System based on Nordic Radio Frequency

S. Nagadevi, K.V.N. Anilkumar, G. Kumar Raja

Received 08 November 2018 • Revised: 30 November 2018 • Accepted: 06 December 2018

Abstract: The vehicles are growing rapidly in the urban areas vehicle theft has become more popular shared between their citizens vehicle tracking system has been designed based on internet of things by using RFID tags and alerts the Police by the location using IOT. The traffic sections are formed in a secure network by using NRF which gathers the information of the stolen vehicle and passes to the other traffic section. Hence this method helps us to find the stolen vehicle location accurately.

Keywords: IOT, NRF, RFID.

INTRODUCTION

Vehicle tracking system has been designed various technologies by using their RFID tags, RFID reader and NRF. RFID is an identification of method and RFID reader read their tag details and it sends to a controller unit and it update into their data. NRF is an used to create between the traffic section signals and it is a wifi module it can work with speed of 1mbps and wide range upto 1km. Whenever the vehicle passed through the traffic signal RFID reader read their tag details and it sends to the controller to check whether the vehicle is theft or not in the data base if it is stolen vehicle then sends the information to the police station with the the help of transport office, so police can trace the vehicle by their next possible path.

LITERATURE SURVEY

Lili Wan TiejunChen Automobile Anti Theft vehicle system based on GSM This paper mainly focuses on GSM network owner can receive a message and it can monitor a car accurately if it is necessary by developing a GSM network we can get a better results[1]

Kingshuk Mukherjee Anti Theft Vehicle Trackingabnd immobilization system This paper mainly describes on GSM and GPS tracking system and its immobilization GSM receives a message with the help of GPS location of their accurately if the owner sends a message track with the help of aurdino it passes to a GPS and it send back to the aurdino if the owner send a message immobilize the relay which is connected to their fuel injector through the GSM modem if the owner sends a message reverse the relay which is connected across the fuel injector there by closing their circuit[2]

Shruthi.K, Ramaprasad. P, Ruschil Ray, Manj Unath A. Naik, Shubham Pansari Design of an antitheft vehicle tracking system with a smart phone application This paper mainly describes on GSM and GPS, web camera to track their vehicle.

If the moves the owner can receive a image with the help of camera the owner can check whether the driver authenticated or not. If it is not authenticated he can send the message so alert to the police station regarding car colour, number model. They can trace the vehicle with the help of GPS with the coordination of GPS sends to the controller and it sends a location of the vehicle accurately[3]

Hui Song, Sencum Zhu and Guohong Cao SVATS A Sensor network based vehicle anti theft system. This paper mainly focused on sensor network based vehicle anti theft system which can un authorized vehicle movement to track their stolen vehicle and it sends a information to the base station[4]

Pazhampilly Sreedevi, B. Sarath S Nair image processing based real time vehicle theft detection and prevention system. This paper mainly describes by taking their photos and his face will be check into their data base whether the driver is authenticated or not.
If is not authenticated electronic signals will not get activated. To overcome background cancellation while clicking the photos we need to develop DCT normalization for their face detection and face recognition algorithms have been used[5].

Table 2.1: Survey has been investigated and studied

<table>
<thead>
<tr>
<th>EXISTING SYSTEM</th>
<th>PLATFOR RM</th>
<th>METHODOLOGY</th>
<th>FRIENDLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobile Anti-theft System Design based on GSM</td>
<td>PC based system. WSN are used to monitor the system</td>
<td>Location analysis sending information to server</td>
<td>The system is complex</td>
</tr>
<tr>
<td>Anti-Theft Vehicle Tracking and Immobilization System</td>
<td>GPS, GSM based system.</td>
<td>GPS tracking, monitoring using Google map and alerting</td>
<td>The system is user friendly</td>
</tr>
<tr>
<td>Design of an Anti-theft vehicle Tracking System with a Smartphone Application</td>
<td>GPS, GSM and microcontroller based system.</td>
<td>GPS tracking, control using map and sending alert SMS.</td>
<td>User friendly</td>
</tr>
<tr>
<td>A Sensor-network-based Vehicle Anti-Theft System</td>
<td>PC based system. WSN are used to monitor the system</td>
<td>Location analysis, sending information to server</td>
<td>The system is complex</td>
</tr>
<tr>
<td>Image Processing Based Real Time Vehicle Theft Detection And Prevention System</td>
<td>GSM based system</td>
<td>Image processing, sending to server</td>
<td>The system is complex</td>
</tr>
</tbody>
</table>

SYSTEM BLOCK DIAGRAM

In this proposed system, we can design a anti - theft tracking system to track the theft vehicle. In this project nRF is used to transfer the data. RFID is used to identify the theft vehicle. IoT is used for live update. We can get the IoT update detail from any place.

In the proposed system anti-theft tracking system is developed. In which the anti theft control management. Each and every vehicle provides a RFID tag and stored in to their data base.NRF is used to create a local network among the traffic signals whenever the vehicle passed to their traffic signal which is connected to their IOT modules. The Arduino UNO controller is used to interface the NRF, RFID and IOT
modules. When ever the vehicle passed through the traffic signal RFID reader reads the tag details and it sends to the controller to check whether the vehicle is theft or not in the data base if it is stolen vehicle then sends the information to the police station with the help of transport office, so police can trace the vehicle by their next possible path.

Vehicle Unit:

![Vehicle Unit Diagram](image)

Fig. 3.1: Vehicle Unit

Traffic signal section 1

![Traffic Signal Section 1 Diagram](image)

Traffic signal section 2

![Traffic Signal Section 2 Diagram](image)
Flow chart

- Start RFID TAG
- Update the information provided with a RFID TAG in data base via IOT
- NRF is used to create the local network one traffic signal detects the stolen vehicle which is passed to the other traffic signal which is connected to IOT
- If the vehicle is passed through the signal reader the vehicle type and gives to the controller unit
- If any stolen vehicle found in traffic signal section controller
- Send to the police station
- Stop

APPLICATIONS

• Low cost
• Easy to find the theft vehicle. High flexibility
• No need to recharge(money) the nRf
• Easy to track the vehicle

HARDWARE COMPONENTS

AURDINO UNO

Aurdinouno is an micro controller is based on AT Mega 328P. It consist of A1-A5 analog pins, USB cable, 2-13 digital i/o pins, reset button, resetpin. It can be connected to their computer for their power supply as shown fig 5.1
RFID TAG

A RFID is a micro chip containing which identifies a information and an antenna that transmit a data into a reader.

![RFID passive tag](image1)

RFID READER

RFID reader reads the RFID tag details.

It has more one or more than one antenna Which leaves their radio waves and receive their signals.

![RFID reader module](image2)

NRF

NRF is a wireless module it is used to communicate between the devices it can work with speed of 2.4Ghz and its range upto 1km

![NRF wireless transceiver module](image3)
IOT

The internet of things is a inter relation of computer devices, digital systems, electronic devices that can provide their unique identifiers and used to transfer and exchange their data

LCD

LCD is an electronic device and it can be used in various types of applications. It has 16 characters per line there are 2 such lines and seven segments and it can display 16x2 with the size of 5x7 pixel matrix.

RESULTS AND DISCUSSION

The work given in the flowchart has been designed anti-theft vehicle tracking system based on RFID tag, RFID reader and NRF. Each and every vehicle we are providing RFID tag. If the vehicle is stolen then we need to update the tag details to the database if any vehicle theft vehicle is moving from the traffic signals then RFID reader reads the tag details it sends to the controller unit then controller unit check whether it is theft vehicle or not if it is theft vehicle is found it sends information to the police station with the help of transport office.

If any theft vehicle and ambulance is arrived at the same time to the traffic signal then we will give the first preference to the ambulance. If the theft vehicle is found the traffic signal if stops for 5 seconds meanwhile police should reach near the traffic signal otherwise the vehicle will be moved and converting yellow and green light to reach from red signal 5 milliseconds.
Fig. 6.2: When the theft vehicle is arrived near the traffic signal 1

Fig. 6.3: When the theft vehicle is arrived near the traffic signal 2

Fig. 6.4: Monitoring vehicles information which arriving from the traffic signals.
CONCLUSION

Designed a system is a vehicles checking on the road by the police department. WE introducing RFID tags, RFID reader and NRF. We are placing RFID reader on the road so we can track the vehicles easily NRF is used to communicate between the traffic signals. the police department and owner can find their vehicles very easily.

REFERENCES

[1] Lill wan thejunchen automobile and theft vehicle system based on GSM 2012.